Skip to main content
Log in

Calcium-dependent control of volume regulation in renal proximal tubule cells: I. Swelling-Activated Ca2+ entry and release

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The mechanism of Ca2+-dependent control of hypotonic cell volume regulation was investigated in the isolated, nonperfused renal proximal straight tubule. When proximal tubules were exposed to hypotonic solution with 1 mM Ca2+, cells swelled rapidly and then underwent regulatory volume decrease (RVD). This treatment resulted in an increase in intracellular free calcium concentration ([Ca2+]i) by a mechanism that had two phases: the first was a transient increase from baseline (136 nM) to a peak (413 nM) that occurred in the first 15–20 sec, but was followed by a rapid decay toward the pre-swelling levels. The second phase was characterized by a sustained elevation of [Ca2+]i above the baseline (269 nM), which was maintained over several minutes. The dependence of these two phases on extracellular Ca2+ was determined. Reduction of bath [Ca2+] to 10 or 1 μM partially diminished the transient phase, but abolished the sustained phase completely, such that [Ca2+]i fell below the base-line levels during RVD. It was concluded that the transient increase resulted predominantly from swelling-activated release of intracellular Ca2+ stores and that the sustained phase was due to swelling-activated Ca2+ entry across the plasma membrane. Ca2+ entry probably also contributed to the transient increase in [Ca2+]i. The time dependence of swelling-activated Ca2+ entry was also investigated, since it was previously shown that RVD was characterized by a “calcium window” period (<60 sec). during which extracellular Ca2+ was required. Outside of this time period, RVD would inactivate and could not be reactivated by subsequent addition of Ca2+. It was found that the Ca2+ permeability did not inactivate over several minutes, indicating that the temporal dependence of RVD on extracellular Ca2+ is not due to the transient activation of a Ca2+ entry pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboolian, A., Nord, E.P. 1988. Bradykinin increases cytosolic free [Ca2+] in proximal tubular cells.Am. J. Physiol. 255:F486-F493

    PubMed  Google Scholar 

  2. Berridge, M.J. 1987. Inositol trisphosphate and diacylglycerol: two interacting second messengers.Annu. Rev. Biochem. 56:159–193

    PubMed  Google Scholar 

  3. Berridge, M.J., Irvine, R.F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction.Nature 312:315–320

    Article  Google Scholar 

  4. Carafoli, E. 1987. Intracellular calcium homeostasis.Annu. Rev. Biochem. 56:395–433

    PubMed  Google Scholar 

  5. Chamberlin, M.E., Strange, K. 1989. Anisosmotic cell volume regulation: A comparative view.Am. J. Physiol. 257:C159-C173

    PubMed  Google Scholar 

  6. Chan, L., Schrier, R.W. 1990. Effects of calcium channel blockers on renal function.Annu. Rev. Med. 41:289–302

    Article  PubMed  Google Scholar 

  7. Davis, C.W., Finn, A.L. 1987. Interactions of sodium transport, cell volume, and calcium in frog urinary bladder.J. Gen. Physiol. 89:687–702

    PubMed  Google Scholar 

  8. Dellasega, M., Grantham, J.J. 1973. Regulation of renal tubule cell volume in hypotonic media.Am. J. Physiol. 224:1288–1294

    PubMed  Google Scholar 

  9. Eveloff, J.L., Warnock, D.G. 1987. Activation of ion transport systems during cell volume regulation.Am. J. Physiol. 252:F1-F10

    PubMed  Google Scholar 

  10. Filipovic, D., Sackin, H. 1991. A calcium permeable stretch-activated cation channel in renal proximal tubule.Am. J. Physiol. 260:F119-F129

    PubMed  Google Scholar 

  11. Fiskum, G., Cockrell, R.S. 1985. Uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria.Arch. Biochem. Biophys. 240:723–733

    Article  PubMed  Google Scholar 

  12. Foskett, J.K. 1988. Simultaneous Nomarski and fluorescence imaging during video microscopy of cells.Am. J. Physiol. 255:C566-C571

    PubMed  Google Scholar 

  13. Goligorsky, M.S., Hruska, K.A., Loftus, D.J., Elson, E.L. 1986. Alpha 1-adrenergic stimulation and cytoplasmic free calcium concentration in cultured renal proximal tubular cells: Evidence for compartmentalization of quin-2 and fura-2.J. Cell. Physiol. 128:466–474

    Article  PubMed  Google Scholar 

  14. Goligorsky, M.S., Loftus, D.J., Hruska, K.A. 1986. Cytoplasmic calcium in individual proximal tubular cells in culture.Am. J. Physiol. 251:F938-F944

    PubMed  Google Scholar 

  15. Grinstein, S., Dupre, A., Rothstein, A. 1982. Volume regulation by human lymphocytes: Role of calcium.J. Gen. Physiol. 79:849–868

    Article  PubMed  Google Scholar 

  16. Grynkiewicz, G., Poenie, M., Tsien, R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties.J. Biol. Chem. 260:3440–3450

    PubMed  Google Scholar 

  17. Hoffmann, E.K. 1987. Volume regulation in cultured cells.Curr. Topics Membr. Transp. 30:125–180

    Google Scholar 

  18. Hoffmann, E.K., Lambert, I.H., Simonsen, L.O. 1986. Separate, Ca2+-activated K+ and Cl transport pathways in Ehrlich ascites tumor cells.J. Membrane Biol. 91:227–244

    Article  Google Scholar 

  19. Hoffmann, E.K., Simonsen, L.O. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells.Physiol. Rev. 69:315–382

    PubMed  Google Scholar 

  20. Hoffmann, E.K., Simonsen, L.O., Lambert, I.H. 1984. Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells: Role of internal Ca2+.J. Membrane Biol. 78:211–222

    Article  Google Scholar 

  21. Krik, K.L., Schaffer, J.A., DiBona, D.R. 1987. Cell volume regulation in rabbit proximal straight tubule perfused in vitro.Am. J. Physiol. 252:F922-F932

    PubMed  Google Scholar 

  22. Lee, K.S., Tsien, R.W. 1983. Mechanism of calcium channel blockade by verapamil, D600, diltiazem, and nitrendipine in single dialyzed heart cells.Nature 302:790–794

    PubMed  Google Scholar 

  23. Linshaw, M.A., Grantham, J.J. 1980. Effect of collagenase and ouabain on renal cell volume in hypotonic media.Am. J. Physiol. 238:F491-F498

    PubMed  Google Scholar 

  24. McCarty, N.A., O'Neil, R.G. 1991. Calcium-dependent control of volume regulation in renal proximal tubule cells. II. Roles of dihydropyridine-sensitive and-insensitive Ca2+ entry pathways.J. Membrane Biol. 123:161–170

    Google Scholar 

  25. McCarty, N.A., O'Neil, R.G. 1990. Dihydropyridine-sensitive cell volume regulation in proximal tubule: The calcium window.Am. J. Physiol. 259:F950-F960

    Google Scholar 

  26. McCarty, N.A., O'Neil, R.G. 1990. The dihydropyridine-sensitive, cell volume-activated Ca entry pathway in proximal tubule.J. Cell Biol. 111:63a

    Google Scholar 

  27. Reed, P.W., Lardy, H.A. 1972. A23187: A divalent cation ionophore.J. Biol. Chem. 247:6970–6977

    PubMed  Google Scholar 

  28. Sackin, H. 1989. A stretch-activated K+ channel sensitive to cell volume.Proc. Natl. Acad. Sci. USA 86:1731–1735

    PubMed  Google Scholar 

  29. Schmid, A., Dehlinger-Kremer, M., Schulz, I., Gögelein, H. 1990. Voltage-dependent insP3-insensitive calcium channels in membranes of pancreatic endoplasmic reticulum vesicles.Nature 346:374–376

    Article  PubMed  Google Scholar 

  30. Simon, S.M., Blobel, G., Zimmerberg, J. 1989. Large aqueous channels in membrane vesicles derived from the rough endoplasmic reticulum or the plasma membrane ofEscherichia coli.Proc. Natl. Acad. Sci. USA 86:6176–6180

    PubMed  Google Scholar 

  31. Snowdowne, K.W., Borle, A.B. 1985. Effects of low extracellular sodium on cytosolic ionized calcium: Na+-Ca++ exchange as a major calcium influx pathway in kidney cells.J. Biol. Chem. 260:14998–15007

    PubMed  Google Scholar 

  32. Suzuki, M., Kawaguchi, Y., Kurihara, S., Miyahara, T. 1989. Heterogeneous response of cytoplasmic free Ca2+ in proximal convoluted and straight tubule cells in primary culture.Am. J. Physiol. 257:F724-F731

    PubMed  Google Scholar 

  33. Suzuki, M., Kawahara, K., Ogawa, A., Morita, T., Kawaguchi, Y., Kurihara, S., Sakai, O. 1990. [Ca2+]i rises via G protein during regulatory volume decrease in rabbit proximal tubule cells.Am. J. Physiol. 258:F690-F696

    PubMed  Google Scholar 

  34. Talor, Z., Arruda, J.A.L. 1986. Na-Ca exchange in renal tubular basolateral membranes.Min. Electrolyte Metab. 12:239–245

    Google Scholar 

  35. Volpe, P., Krause, K.H., Hashimoto, S., Zorzato, F., Pozzan, T., Meldolesi, J., Lew, D.P. 1988. “Calciosome”, a cytoplasmic organelle: The inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells?Proc. Natl. Acad. Sci. USA 85:1091–1095

    PubMed  Google Scholar 

  36. Welling, P.A., Linshaw, M.A. 1988. Importance of anion in hypotonic volume regulation of rabbit proximal straight tubule.Am. J. Physiol. 255:F853-F860

    PubMed  Google Scholar 

  37. Welling, P.A., O'Neil, R.G. 1990. Cell swelling activates basolateral membrane Cl and K conductances in rabbit proximal tubule.Am. J. Physiol. 258:F951-F962

    PubMed  Google Scholar 

  38. Wong, S.M.E., DeBell, M.C., Chase, H.S., Jr. 1990. Cell swelling increases intracellular free [Ca] in cultured toad bladder cells.Am. J. Physiol. 258:F292-F296

    PubMed  Google Scholar 

  39. Yamaguchi, D.T., Green, J., Kleeman, C.R., Muallem, S. 1989. Characterization of volume-sensitive, calcium-permeating pathways in the osteosarcoma cell line UMR-106-01.J. Biol. Chem. 264:4383–4390

    PubMed  Google Scholar 

  40. Yang, X.C., Sachs, F. 1989. Block of stretch-activated ion channels inXenopus oocytes by gadolinium and calcium ions.Science 243:1068–1071

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarty, N.A., O'Neil, R.G. Calcium-dependent control of volume regulation in renal proximal tubule cells: I. Swelling-Activated Ca2+ entry and release. J. Membrain Biol. 123, 149–160 (1991). https://doi.org/10.1007/BF01998085

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01998085

Key Words

Navigation