Skip to main content
Log in

Separate, Ca2+-activated K+ and Cl transport pathways in Ehrlich ascites tumor cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The net loss of KCl observed in Ehrlich ascites cells during regulatory volume decrease (RVD) following hypotonic exposure involves activation of separate conductive K+ and Cl transport pathways. RVD is accelerated when a parallel K+ transport pathway is provided by addition of gramicidin, indicating that the K+ conductance is rate limiting. Addition of ionophore A23187 plus Ca2+ also activates separate K+ and Cl transport pathways, resulting in a hyperpolarization of the cell membrane. A calculation shows that the K+ and Cl conductance is increased 14-and 10-fold, respectively. Gramicidin fails to accelerate the A23187-induced cell shrinkage, indicating that the Cl conductance is rate limiting. An A23187-induced activation of42K and36Cl tracer fluxes is directly demonstrated. RVD and the A23187-induced cell shrinkage both are: (i) inhibited by quinine which blocks the Ca2+-activated K+ channel. (ii) unaffected by substitution of NO 3 or SCN for Cl, and (iii) inhibited by the anti-calmodulin drug pimozide. When the K+ channel is blocked by quinine but bypassed by addition of gramicidin, the rate of cell shrinkage can be used to monitor the Cl conductance. The Cl conductance is increased about 60-fold during RVD. The volume-induced activation of the Cl transport pathway is transient, with inactivation within about 10 min. The activation induced by ionophore A23187 in Ca2+-free media (probably by release of Ca2+ from internal stores) is also transient, whereas the activation is persistent in Ca2+-containing media. In the latter case, addition of excess EGTA is followed by inactivation of the Cl transport pathway. These findings suggest that a transient increase in free cytosolic Ca2+ may account for the transient activation of the Cl transport pathway. The activated anion transport pathway is unselective, carrying both Cl, Br, NO 3 , and SCN. The anti-calmodulin drug pimozide blocks the volume- or A23187-induced Cl transport pathway and also blocks the activation of the K+ transport pathway. This is demonstrated directly by42K flux experiments and indirectly in media where the dominating anion (SCN) has a high ground permeability. A comparison of the A23187-induced K+ conductance estimated from42K flux measurements at high external K+, and from net K flux measurements suggests single-file behavior of the Ca2+-activated K+ channel. The number of Ca2+-activated K+ channels is estimated at about 100 per cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arslan, P., Virgilio, F.D., Beltrame, M., Tsien, R., Pozzan, T. 1985. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+.J. Biol. Chem. 260:2719–2727

    PubMed  Google Scholar 

  • Bergenisich, T., Smith C. 1984. Multi-ion nature of potassium channels in squid axons.In: The Squid Axon. P.F. Baker, editor. Current Topics in Membranes and Transport. Vol. 22, pp. 353–369. Academic, New York

    Google Scholar 

  • Cala, P.M. 1980. Volume regulation byAmphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways.J. Gen. Physiol. 76:683–708

    Article  PubMed  Google Scholar 

  • Cala, P.M. 1983a. Volume regulation by red blood cells: Mechanisms of ion transport.Mol. Physiol. 4:33–52

    Google Scholar 

  • Cala, P.M. 1983b. Cell volume regulation byAmphiuma red blood cells. The role of Ca2+ as a modulator of alkali metal/H+ exchange.J. Gen. Physiol. 82:761–784

    Article  PubMed  Google Scholar 

  • Cala, P.M., 1985. Volume regulation byAmphiuma red blood cells.Mol. Physiol. 8:199–214

    Google Scholar 

  • Chase, H., Wong, S. 1985. Cell swelling increases intracellular calcium, a requirement for the increase in K+ permeability which underlies volume regulation in toad bladder.Kidney Int. 27:305

    Google Scholar 

  • Cittadini, A., Dani, A.M., Wolf, F. Bossi, D., Calviello, G. 1982. Calcium permeability of Ehrlich ascites tumour cell plasma membrane in vivo.biochim. Biophys. Acta 686:27–35

    PubMed  Google Scholar 

  • Davis, C.W., Finn, A.L. 1982. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia.Science 216:525–527

    PubMed  Google Scholar 

  • Dunham, P.B., Ellory, J.C. 1981. Passive potassium transport in low potassium sheep red cells: Dependence upon cell volume and chloride.J. Physiol. (London) 318:511–530

    Google Scholar 

  • Eagle, H. 1971. Buffer combinations for mammalian cell culture.Science 174:500–503

    PubMed  Google Scholar 

  • Ellory, J.C., Dunham, P.B., Logue, P.J., Stewart G.W. 1982. Anion-dependent cation transport in erythrocytes..Philos. Trans. R. Soc. London B 299:483–495

    Google Scholar 

  • Ellory, J.C., Hall, A.C., Stewart, G.W. 1985a. Volume-sensitive passive potassium fluxes in red cells.In: Transport Processes, Iono- and Osmoregulation. R. Gilles and M. Gilles-Baillien editors. pp. 401–410. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Ellory, J.C., Hall, A.C., Stewart, G.W. 1985b. Volume-sensitive cation fluxes in mammalian red cells.Mol. Physiol. 8:235–246

    Google Scholar 

  • Gárdos, G., Lassen, U.V., Pape, L. 1976. Effect of antihistamines and chlorpromazine on the calcium-induced hyperpolarization of theAmphiuma red cell membrane.biochim. Biophys. Acta 448:599–606

    PubMed  Google Scholar 

  • Grinstein, S., Clarke, C.A., DuPre, A., Rothstein, A. 1982a. Volume-induced increase of anion permeability in human lymphocytes.J. Gen. Physiol. 80:801–823

    Article  PubMed  Google Scholar 

  • Grinstein, S., Clarke, C.A., Rothstein, A. 1982b. Increased anion permeability during volume regulation in human lymphocytes.Phil. Trans. R. Soc. London B 299:509–518

    Google Scholar 

  • Grinstein, S., Clarke, C.A., Rothstein, A., Gelfand, E.W. 1983. Volume-induced anion conductance in human B lymphocytes is cation independent.Am. J. Physiol. 245:C160-C163

    PubMed  Google Scholar 

  • Grinstein, S., DuPre, A., Rothstein, A. 1982c. Volume regulation by human lymphocytes. Role of calcium.J. Gen. Physiol. 79:849–868

    Article  PubMed  Google Scholar 

  • Grinstein, S., Rothstein, A., Sarkadi, B., Gelfand, E.W. 1984. Responses of lymphocytes to anisotonic media: Volume-regulating behavior.Am. J. Physiol. 246:C204-C215

    PubMed  Google Scholar 

  • Grygorczyk, R., Schwartz, W., Passow, H. 1984. Ca2+-activated K+ channels in human red cells. Comparison of single-channel currents with ion fluxes.Biophys. J. 45:693–698

    PubMed  Google Scholar 

  • Hendil, K.B., Hoffmann, E.K. 1974.. Cell volume regulation in Ehrlich ascites tumor cells.J. Cell. Physiol. 84:115–125

    Article  PubMed  Google Scholar 

  • Hodgkin, A.L. 1951. The ionic basis of electrical activity in nerve and muscle.Biol. Rev. 26:339–409

    Google Scholar 

  • Hodgkin, A.L., Keynes, R.D. 1955. The potassium permeability of a giant nerve fibre.J. Physiol. (London) 128:61–88

    Google Scholar 

  • Hoffmann, E.K. 1978. Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumor cells.In: Osmotic and Volume Regulation. Alfred Benzon Symposium XI. C.B. Jørgensen and E. Skadhauge, editors. pp. 397–417. Munksgaard, Copenhagen

    Google Scholar 

  • Hoffmann, E.K. 1982. Anion exchange and anion-cation cotransport systems in mammalian cells.Phil. Trans. R. Soc. London B 299:519–535

    Google Scholar 

  • Hoffmann, E.K. 1983. Volume regulation by animal cells.In: Cellular Acclimatization to Environmental Change. Soc. Exptl. Biol. Seminar Series 18. A.R. Cossins and P.G. Shetterline, editors, pp. 55–80. Cambridge University Press, Cambridge

    Google Scholar 

  • Hoffmann, E.K. 1985a. Cell volume control and ion transport in a mammalian cell.In: Transport Processes, Iono- and Osmoregulation. R. Gilles and M. Gilles-Baillien, editors. pp. 389–400. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Hoffmann, E.K. 1985b. Regulatory volume decrease in Ehrlich ascites tumor cells: Role of inorganic ions and amino compounds.Mol. Physiol. 8:167–184

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H. 1983. Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells.J. Physiol. (London) 338:613–625

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H., Simonsen, L.O. 1984a. Separate K+ and Cl transport pathways activated by Ca2+ in Ehrlich mouse ascites tumour cells.J. Physiol. (London) 357:62P

    Google Scholar 

  • Hoffmann, E.K., Schiødt, M., Dunham, P.B. 1986. The number of chloride-cation cotransport sites on Ehrlich ascites cells measured with3H-bumetanide.Am. J. Physiol. (In press)

  • Hoffmann, E.K., Simonsen, L.O., Lambert, I.H. 1984b. Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+.J. Membrane Biol. 78:211–222

    Google Scholar 

  • Hoffmann, E.K., Simonsen, L.O., Sjøholm, C. 1979. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumour cells.J. Physiol. (London) 296:61–84

    Google Scholar 

  • Hoffmann, E.K., Sjøholm, C., Simonsen, L.O. 1983. Na+, Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).J. Membrane Biol. 76:269–280

    Google Scholar 

  • Horowicz, P., Gage, P.W., Eisenberg, R.S. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle.J. Gen. Physiol. 51:193s-203s

    PubMed  Google Scholar 

  • Klaven, N.B., Pershadsingh, H.A., Henius, G.V., Laris, P.C., Long, J.W., Jr., McDonald, J.M. 1983. A high-affinity, calmodulin-sensitive (Ca2++Mg2+)-ATPase and associated calcium-transport pump in the Ehrlich ascites tumor cell plasma membrane.Arch. Biochem. Biophys. 226:618–628

    Article  PubMed  Google Scholar 

  • Kramhøft, B., Lambert, I.H., Hoffmann, E.K., Jørgensen. F. 1986. Activation of Cl-dependent K transport in Ehrlich ascites tumor cells.Am. J. Physiol. (In press)

  • Kregenow, F.M. 1981. Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media.Annu. Rev. Physiol. 43:493–505

    Article  PubMed  Google Scholar 

  • Kristensen, L.Ø., Folke, M. 1984. Volume-regulatory K+ efflux during concentrative uptake of alanine in isolated rat hepatocytes.Biochem. J. 221:265–268

    PubMed  Google Scholar 

  • Kristensen, P., Ussing, H.H. 1985. Epithelial organization.In: The Kidney: Physiology and Pathophysiology. D.W. Seldin and G. Giebisch, editors. pp. 173–188. Raven, New York

    Google Scholar 

  • Lackington, I., Orrego, F. 1981. Inhibition of calcium-activated potassium conductance of human erythrocytes by calmodulin inhibitory drugs.FEBS Lett. 133:103–106

    Article  PubMed  Google Scholar 

  • Lambert, I.H. 1984. Activation of Na+, Cl-cotransport in Ehrlich ascites cells by cell shrinkage following addition of the Ca2+ ionophore A23187.Acta Physiol. Scand. 121:18A

    Google Scholar 

  • Larson, M., Spring, K.R. 1984. Volume regulation byNecturus gallbladder: Basolateral KCl exit.J. Membrane Biol. 81:219–232. Letter to the Editor,ibid.84:191 (1985)

    Google Scholar 

  • Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30

    Google Scholar 

  • Lau, K.R., Hudson, R.L., Schultz, S.G. 1984. Cell swelling increases a barium-inhibitable potassium conductance in the basolateral membrane ofNecturus small intestine.Proc. Natl. Acad. Sci. USA 81:3591–3594

    PubMed  Google Scholar 

  • Lauf, P.K. 1982. Evidence for chloride dependent potassium and water transport induced by hyposmotic stress in erythrocytes of the marine teleost,Opsanus tau.J. Comp. Physiol. 146:9–16

    Google Scholar 

  • Lauf, P.K. 1985. On the relationship between volume-and thiolstimulated K+, Cl fluxes in red cell membranes.Mol. Physiol. 8:215–234

    Google Scholar 

  • Lauf, P.K., Adragna, N.C., Garay, R.P. 1984. Activation by N-ethylmaleimide of a latent K, Cl flux in human red blood cells.Am. J. Physiol. 246:C385-C390

    PubMed  Google Scholar 

  • Lauf, P.K., Mangor-Jensen, A. 1984. Effects of A23187 and Ca2+ on volume- and thiol-stimulated, ouabain-resistant K+ Cl fluxes in low K sheep erythrocytes.Biochem. Biophys. Res. Commun. 125:790–797

    Article  PubMed  Google Scholar 

  • Lauf, P.K., Theg, B.E. 1980. A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes.Biochim. Biophys. Res. Commun. 92:1422–1428

    Article  Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1978. Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes.In: Current Topics in Membranes and Transport. E. Bronner and A. Kleinzeller, editors. Vol. 10, pp. 217–277. Academic, London

    Google Scholar 

  • Lew, V.L., Muallem, S., Seymour, C.A. 1982. Properties of the Ca2+-activated K+ channel in one-step inside-out vesicles from human red cell membranes.Nature (London) 296:742–744

    Article  Google Scholar 

  • MacRobbie, E.A.C., Ussing, H.H. 1961. Osmotic behaviour of the epithelial cells of frog skin.Acta Physiol. Scand. 53:348–365

    PubMed  Google Scholar 

  • McManus, T.J., Haas, M., Starke, L.C., Lytle, C.Y. 1985. The duck red cell model of volume-sensitive chloride-dependent cation transport.Ann. N.Y. Acad. Sci. 456:183–186

    PubMed  Google Scholar 

  • McManus, T.J., Schmidt, W.F., III 1978. Ion and co-ion transport in avian red cells.In: Membrane Transport Processes. J.F. Hoffman, editor. Vol. 1, pp. 79–106. Raven, New York

    Google Scholar 

  • Nauntofte, B., Poulsen, J.H. 1984. Chloride transport in rat parotid acini: Furosemide-sensitive uptake and calcium-dependent release.J. Physiol. (London) 357:61 P

    Google Scholar 

  • Pape, L., Kristensen, B.I. 1984. A calmodulin activated Ca2+-dependent K+ channel in human erythrocyte membrane inside-out vesicles.Biochim. Biophys. Acta 770:1–6

    PubMed  Google Scholar 

  • Parker, J.C. 1983. Hemolytic action of potassium salts on dog red blood cells.Am. J. Physiol. 244:C313-C317

    PubMed  Google Scholar 

  • Plishker, G.A. 1984. Phenothiazine inhibition of calmodulin stimulates calcium-dependent potassium efflux in human red blood cells.Cell Calcium 5:177–185

    Article  PubMed  Google Scholar 

  • Pressman, B.C. 1976. Biological applications of ionophores.Annu. Rev. Biochem. 45:501–530

    PubMed  Google Scholar 

  • Rink, T.J., Sanchez, A., Grinstein, S., Rothstein, A. 1983. Volume restoration in osmotically swollen lymphocytes does not involve changes in free Ca2+ concentration.Biochim. Biophys. Acta 762:593–596

    Article  PubMed  Google Scholar 

  • Rorive, G., Gilles, R. 1979. Intracellular inorganic osmotic effectors.In: Mechanisms of Osmoregulation in Animals. R. Gilles, editor. pp. 83–109. John Wiley & Sons, New York

    Google Scholar 

  • Sarkadi, B., Cheung, R., Mack, E., Grinstein, S., Gelfand, E.W., Rothstein, A. 1985. Cation and anion transport pathways in volume regulatory response of human lymphocytes to hyposmotic media.Am. J. Physiol. 248:C480-C487

    PubMed  Google Scholar 

  • Sarkadi, B., Mack, E., Rothstein, A. 1984a. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. I. Distinctions between volume-activated Cl and K+ conductance pathways.J. Gen. Physiol. 83:497–512

    Article  PubMed  Google Scholar 

  • Sarkadi, B., Mack, E., Rothstein, A. 1984b. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. II. Volume- and time-dependent activation and inactivation of ion transport pathways.J. Gen. Physiol. 83:513–527

    Article  PubMed  Google Scholar 

  • Scharff, O., Foder, B., Skibsted, U. 1983. Hysteretic activation of the Ca2+ pump revealed by calcium transients in human red cells.Biochim. Biophys. Acta 730:295–305

    PubMed  Google Scholar 

  • Schultz, S.G., Hudson, R.L., Lapointe, J.-Y. 1985. Electrophysiological studies on sodium cotransport in epithelia: Towards a cellular model.Ann. N.Y. Acad. Sci. 456:127–135

    PubMed  Google Scholar 

  • Schwartz, W., Passow, H. 1983. Ca2+-activated K+ channels in erythrocytes and excitable cells.Annu. Rev. Physiol. 45:359–374

    Article  PubMed  Google Scholar 

  • Siebens, A.W. 1985. Cellular volume control.In: The Kidney: Physiology and Pathophysiology. D.W. Seldin and G. Giebisch, editors. pp. 91–115. Raven, New York

    Google Scholar 

  • Simonsen, L.O., Nielsen, A.-M.T. 1971. Exchangeability of chloride in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 241:522–527

    PubMed  Google Scholar 

  • Sjøholm, C., Hoffmann, E.K., Simonsen, L.O. 1981. Anioncation co-transport and anion exchange in Ehrlich ascites tumour cells.Acta Physiol. Scand. 112:24A

    Google Scholar 

  • Spring, K.R., Ericson, A.-C. 1982. Epithelial cell volume modulation and regulation.J. Membrane Biol. 69:167–176

    Google Scholar 

  • Sten-Knudsen, O. 1978. Passive transport processes.In: Membrane Transport in Biology. Vol. I. Concepts and Models. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. pp. 5–113. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Thornhill, W.B., Laris, P.C. 1984. KCl loss and cell shrinkage in the Ehrlich ascites tumor cell induced by hypotonic media, 2-deoxyglucose and propranolol.Biochim. Biophys. Acta 773:207–218

    PubMed  Google Scholar 

  • Ussing, H.H. 1978. Interpretation of tracer fluxes.In: Membrane Transport in Biology. Vol. I. Concepts and Models. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. pp. 115–140. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Ussing, H.H. 1982. Volume regulation of frog skin epithelium.Acta Physiol. Scand. 114:363–369

    PubMed  Google Scholar 

  • Ussing, H.H. 1986. Epithelial cell volume regulation illustrated by experiments in frog skin.Renal Physiol. 9:38–46

    PubMed  Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active trasport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110–127

    PubMed  Google Scholar 

  • Valdeolmillos, M., Garcia-Sancho, J., Herreros, B. 1982. Ca2+-dependent K+ transport in the Ehrlich ascites tumor cell.Biochim. Biophys. Acta 685:273–278

    PubMed  Google Scholar 

  • Vestergaard-Bogind, B., Stampe, P., Christophersen, P. 1985. Single-file diffusion through the Ca2+-activated K+-channel of human red cells.J. Membrane Biol. 88:67–75

    Google Scholar 

  • Weiss, B., Prozialeck, W., Cimino, M., Barnette, M.S., Wallace, T.L. 1980. Pharmacological regulation of calmodulin.In: Calmodulin and Cell Functions. D.M. Watterson and F.F. Vincenzi, editors.Ann. N.Y. Acad. Sci. 356:319–345

  • Wiater, L.A., Dunham, P.B. 1983. Passive transport of potassium and sodium in human erythrocytes: Effects of sulfhydryl binding agents and furosemide.Am. J. Physiol. 245:C348-C356

    PubMed  Google Scholar 

  • Yingst, D.R., Hoffman, J.F. 1984. Ca-induced K transport in human red blood cell ghosts containing arsenazo III. Transmembrane interactions of Na, K, and Ca and the relationship to the functioning Na−K pump.J. Gen. Physiol. 83:19–45

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, E.K., Lambert, I.H. & Ole Simonsen, L. Separate, Ca2+-activated K+ and Cl transport pathways in Ehrlich ascites tumor cells. J. Membrain Biol. 91, 227–244 (1986). https://doi.org/10.1007/BF01868816

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868816

Key Words

Navigation