Skip to main content
Log in

Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Ehrlich ascites tumor cells resuspended in hypotonic medium initially swell as nearly perfect osmometers, but subsequently recover their volume within 5 to 10 min with an associated KCl loss. 1. The regulatory volume decrease was unaffected when nitrate was substituted for Cl, and was insensitive to bumetanide and DIDS. 2. Quinine, an inhibitor of the Ca2+-activated K+ pathway, blocked the volume recovery. 3. The hypotonic response was augmented by addition of the Ca2+ ionophore A23187 in the presence of external Ca2+, and also by a sudden increase in external Ca2+. The volume response was accelerated at alkaline pH. 4. The anti-calmodulin drugs trifluoperazine, pimozide, flupentixol, and chlorpromazine blocked the volume response. 5. Depletion of intracellular Ca2+ stores inhibited the regulatory volume decrease. 6. Consistent with the low conductive Cl permeability of the cell membrane there was no change in cell volume or Cl content when the K+ permeability was increased with valinomycin in isotonic medium. In contrast, addition of the Ca2+ ionophore A23187 in isotonic medium promoted Cl loss and cell shrinkage. During regulatory volume decrease valinomycin accelerated the net loss of KCl, indicating that the conductive Cl permeability was increased in parallel with and even more than the K+ permeability. It is proposed that separate conductive K+ and Cl channels are activated during regulatory volume decrease by release of Ca2+ from internal stores, and that the effect is mediated by calmodulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aull, F. 1981. Potassium chloride cotransport in steady-state ascites tumor cells. Does bumetanide inhibit?Biochim. Biophys. Acta 643:339–345

    PubMed  Google Scholar 

  • Aull, F. 1982. Specific drug sensitive transport pathways for chloride and potassium ions in steady-state Ehrlich mouse ascites tumor cells.Biochim. Biophys. Acta 688:740–746

    PubMed  Google Scholar 

  • Bui, A.H., Wiley, J.S. 1981. Cation fluxes and volume regulation by human lymphocytes.J. Cell. Physiol. 108:47–54

    PubMed  Google Scholar 

  • Cala, P.M. 1980. Volume regulation byAmphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways.J. Gen. Physiol. 76:683–708

    Article  PubMed  Google Scholar 

  • Cala, P.M. 1983. Volume regulation by red blood cells: Mechanisms of ion transport.Mol. Physiol. 4:33–52

    Google Scholar 

  • Chipperfield, A.R. 1980. An effect of chloride on (Na+K) cotransport in human red blood cells.Nature (London) 286:281–282

    Article  Google Scholar 

  • Chipperfield, A.R. 1981. Chloride dependence of frusemide-and phloretin-sensitive passive sodium and potassium fluxes in human red cells.J. Physiol. (London) 312:435–444

    Google Scholar 

  • Christoffersen, G.R.J., Simonsen, L. 1983. Intracellular Ca2+ activity during slow synaptic hyperpolarizations inHelix pomatia.Comp. Biochem. Physiol. 76C:351–364

    Google Scholar 

  • Dunham, P.B., Ellory, J.C. 1981. Passive potassium transport in low potassium sheep red cells: Dependence upon cell volume and chloride.J. Physiol. (London) 318:511–530

    Google Scholar 

  • Dunham, P.B., Stewart, G.W., Ellory, J.C. 1980. Chloride-activated passive potassium transport in human erythrocytes.Proc. Natl. Acad. Sci. USA 77:1711–1715

    PubMed  Google Scholar 

  • Ellory, J.C., Dunham, P.B. 1980. Volume-dependent passive potassium transport in LK sheep red cells.In: Membrane Transport in Erythrocytes. Alfred Benzon Symposium XIV. U.V. Lassen, H.H. Ussing and J.O. Wieth, editors. pp. 409–423. Munksgaard, Copenhagen

    Google Scholar 

  • Ellory, J.C., Dunham, P.B. Logue, P.J., Stewart, G.W. 1982. Anion-dependent cation transport in erythrocytes.Philos. Trans. R. Soc. London B. 299:483–495

    Google Scholar 

  • Garcia-Sancho, J., Sanchez, A., Herreros, B. 1982. All-or-none response of the Ca2+-dependent K+ channel in inside-out vesicles.Nature (London) 296:744–746

    Article  Google Scholar 

  • Geck, P., Pietrzyk, C., Burckhardt, B.-C., Pfeiffer, B., Heinz, E. 1980. Electrically silent co-transport of Na+, K+ and Cl in Ehrlich cells.Biochim. Biophys. Acta 600:432–447

    PubMed  Google Scholar 

  • Grinstein, S., Clarke, C.A., DuPre, A., Rothstein, A. 1982a. Volume-induced increase of anion permeability in human lymphocytes.J. Gen. Physiol. 80:801–823

    Article  PubMed  Google Scholar 

  • Grinstein, S., Clarke, C.A., Rothstein, A. 1982b. Increased anion permeability during volume regulation in human lymphocytes.Philos. Trans. R. Soc. London B. 299:509–518

    Google Scholar 

  • Grinstein, S., DuPre, A., Rothstein, A. 1982c. Volume regulation by human lymphocytes. Role of calcium.J. Gen. Physiol. 79:849–868

    Article  PubMed  Google Scholar 

  • Heinz, E., Geck, P., Pietrzyk, C. 1975. Driving forces of amino acid transport in animal cells.Ann. N.Y. Acad. Sci. 264:428–441

    PubMed  Google Scholar 

  • Hempling, H.G. 1960. Permeability of the Ehrlich ascites tumor cell to water.J. Gen. Physiol. 44:365–379

    PubMed  Google Scholar 

  • Hendil, K.B., Hoffmann, E.K. 1974. Cell volume regulation in Ehrlich ascites tumor cells.J. Cell. Physiol. 84:115–125

    Google Scholar 

  • Hoffman, J.F., Yingst, D.R., Goldinger, J.M., Blum, R.M., Knauf, P.A. 1980. On the mechanism of Ca-dependent K transport in human red blood cells.In: Membrane transport in Erythrocytes. Alfred Benzon Symposium XIV. U.V. Lassen, H.H. Ussing and J.O. Wieth, editors. pp. 178–192. Munksgaard, Copenhagen

    Google Scholar 

  • Hoffmann, E.K. 1978. Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumor cells.In: Osmotic and Volume Regulation. Alfred Benzon Symposium XI. C.B. Jørgensen and E. Skadhauge, editors. pp. 397–417. Munksgaard, Copenhagen

    Google Scholar 

  • Hoffmann, E.K. 1980. Cell volume regulation in mammalian cells.In: Animals and Environmental Fitness. R. Gilles, editor. pp. 43–59. Pergamon, Oxford and New York

    Google Scholar 

  • Hoffmann, E.K. 1982. Anion exchange and anion-cation cotransport systems in mammalian cells.Philos. Trans. R. Soc. London B. 299:519–535

    Google Scholar 

  • Hoffmann, E.K. 1983. Volume regulation by animal cells.In: Cellular Acclimatization to Environmental Change. Soc. Exptl. Biol. Seminar Series 18. A.R. Cossins and P.G. Shetterline, editors. pp. 55–80. Cambridge University Press, Cambridge

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H. 1983. Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells.J. Physiol. (London) 338:613–625

    Google Scholar 

  • Hoffmann, E.K., Simonsen, L.O., Sjøholm, C. 1979. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumour cells.J. Physiol. (London) 296:61–84

    Google Scholar 

  • Hoffmann, E.K., Sjøholm, C., Simonsen, L.O. 1983. Na+, Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).J. Membrane Biol. 76:269–280

    Article  Google Scholar 

  • Hyttel, J. 1978. Effects of neuroleptics on3H-haloperidol and3H-cis(2)-flupenthixol binding and on adenylate cyclase activity in vitro.Life Sci. 23:551–556

    Article  PubMed  Google Scholar 

  • Knauf, P.A., Fuhrmann, G.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane.J. Gen. Physiol. 69:363–386

    PubMed  Google Scholar 

  • Kregenow, F.M. 1971. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism.J. Gen. Physiol. 58:372–395

    PubMed  Google Scholar 

  • Kregenow, F.M. 1981. Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media.Annu. Rev. Physiol. 43:493–505

    Article  PubMed  Google Scholar 

  • Lackington, I., Orrego, F. 1981. Inhibition of calcium-activated potassium conductance of human erythrocytes by calmodulin inhibitory drugs.FEBS Lett. 133:103–106

    Article  PubMed  Google Scholar 

  • Lassen, U.V., Lew, V.L., Pape, L., Simonsen, L.O. 1977. Transient increase in the K permeability of intact human andAmphiuma red cells induced by external Ca at alkaline pH.J. Physiol. (London) 266:72P-73P

    Google Scholar 

  • Lassen, U.V., Pape, L., Vestergaard-Bogind, B. 1980. Calcium related transient changes in membrane potential of red cells.In: Membrane Transport in Erythrocytes. Alfred Benzon Symposium XIV. U.V. Lassen, H.H. Ussing and J.O. Wieth, editors. pp. 255–268. Munksgaard, Copenhagen

    Google Scholar 

  • Lauf, P.K. 1982. Evidence for chloride dependent potassium and water transport induced by hyposmotic stress in erythrocytes of the marine teleost,Opsanus tau.J. Comp. Physiol. 146:9–16

    Google Scholar 

  • Lauf, P.K., Theg, B.E. 1980. A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes.Biochem. Biophys. Res. Commun. 92:1422–1428

    PubMed  Google Scholar 

  • Levinson, C. 1978. Chloride and sulphate transport in Ehrlich ascites tumor cells: Evidence for a common mechanism.J. Cell. Physiol. 95:23–32

    Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1978. Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. Vol. 10, pp. 217–277. Academic, London

    Google Scholar 

  • Lew, V.L., Muallem, S., Seymour, C.A. 1982. Properties of the Ca2+-activated K+ channel in one-step inside-out vesicles from human red cell membranes.Nature (London) 296:742–744

    Article  Google Scholar 

  • MacKnight, A.D.C., Leaf, A. 1977. Regulation of cellular volume.Physiol. Rev. 57:510–573

    PubMed  Google Scholar 

  • Pape, L. 1982. Effect of extracellular Ca2+, K+ and OH on erythrocyte membrane potential as monitored by the fluorescent probe 3,3′-dipropylthiodicarbocyanine.Biochim. Biophys. Acta 686:225–232

    PubMed  Google Scholar 

  • Parker, J.C. 1983. Hemolytic action of potassium salts on dog red blood cells.Am. J. Physiol. 244:C313-C317

    Google Scholar 

  • Parker, J.C., Hoffman, J.F. 1976. Influences of cell volume and adrenalectomy on cation flux in dog red blood cells.Biochim. Biophys. Acta 433:404–408

    Google Scholar 

  • Plishker, G.A., Appel, S.H., Dedman, J.R., Means, A.R. 1980. Phenothiazine inhibition of calmodulin stimulates Ca-dependent K-efflux in human red blood cells.Fed. Proc. 39:1713

    Google Scholar 

  • Ponder, E. 1948. Hemolysis and Related Phenomena. pp. 83–92. Grune & Stratton, New York

    Google Scholar 

  • Poznansky, M., Solomon, A.K. 1972. Effect of cell volume on potassium transport in human red cells.Biochim. Biophys. Acta 274:111–118

    PubMed  Google Scholar 

  • Reichstein, E., Rothstein, A. 1981. Effects of quinine on Ca2+-induced K+ efflux from human red blood cells.J. Membrane Biol. 59:57–63

    Article  Google Scholar 

  • Rorive, G., Gilles, R. 1979. Intracellular inorganic osmotic effectors.In: Mechanisms of Osmoregulation in Animals. R. Gilles, editor. pp. 83–109. John Wiley & Sons, New York

    Google Scholar 

  • Roti-Roti, L.W., Rothstein, A. 1973. Adaptation of mouse leukemic cells (L5178Y) to anisotonic media. I. Cell volume regulation.Exp. Cell Res. 79:295–310

    PubMed  Google Scholar 

  • Sigler, K., Janacek, K. 1971. The effect of non-electrolyte osmolarity on frog oocytes. II. Intracellular potential.Biochim. Biophys. Acta 241:539–546

    PubMed  Google Scholar 

  • Simonsen, L.O., Hoffmann, E.K., Sjøholm, C. 1976. Chloride conductance of the Ehrlich ascites tumor cell membrane.FEBS-Smp. Biochem. Memb. Transp. p. 225

  • Sjøholm, C., Hoffmann, E.K. 1984. Characterization of the Cl transport site of Ehrlich cells by a kinetic analysis of the inhibitory effects of DIDS and pyridoxal phosphate.J. Membrane Biol. (Submitted)

  • Valdeolmillos, M., Garcia-Sancho, J., Herreros, B. 1982. Ca2+-dependent K+ transport in the Ehrlich ascites tumor cell.Biochim. Biophys. Acta 685:273–278

    PubMed  Google Scholar 

  • Weiss, B., Prozialeck, W., Cimino, M., Barnette, M.S., Wallace, T.L. 1980. Pharmacological regulation of calmodulin.In: Calmodulin and Cell Functions. D.M. Watterson and F.F. Vincenzi, editors.Ann. N.Y. Acad. Sci. 356:319–345

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, E.K., Simonsen, L.O. & Lambert, I.H. Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+ . J. Membrain Biol. 78, 211–222 (1984). https://doi.org/10.1007/BF01925969

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01925969

Key Words

Navigation