Skip to main content
Log in

Cell Volume Regulation in the Proximal Tubule of Rat Kidney

Proximal Tubule Cell Volume Regulation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We developed a dynamic model of a rat proximal convoluted tubule cell in order to investigate cell volume regulation mechanisms in this nephron segment. We examined whether regulatory volume decrease (RVD), which follows exposure to a hyposmotic peritubular solution, can be achieved solely via stimulation of basolateral K\(^+\) and \(\hbox {Cl}^-\) channels and \(\hbox {Na}^+\)\(\hbox {HCO}_3^-\) cotransporters. We also determined whether regulatory volume increase (RVI), which follows exposure to a hyperosmotic peritubular solution under certain conditions, may be accomplished by activating basolateral \(\hbox {Na}^+\)/H\(^+\) exchangers. Model predictions were in good agreement with experimental observations in mouse proximal tubule cells assuming that a 10% increase in cell volume induces a fourfold increase in the expression of basolateral K\(^+\) and \(\hbox {Cl}^-\) channels and \(\hbox {Na}^+\)\(\hbox {HCO}_3^-\) cotransporters. Our results also suggest that in response to a hyposmotic challenge and subsequent cell swelling, \(\hbox {Na}^+\)\(\hbox {HCO}^-_3\) cotransporters are more efficient than basolateral K\(^+\) and \(\hbox {Cl}^-\) channels at lowering intracellular osmolality and reducing cell volume. Moreover, both RVD and RVI are predicted to stabilize net transcellular \(\hbox {Na}^+\) reabsorption, that is, to limit the net \(\hbox {Na}^+\) flux decrease during a hyposmotic challenge or the net \(\hbox {Na}^+\) flux increase during a hyperosmotic challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Azuma K, Balkovetz D, Magyar C, Lescale-Matys L, Zhang Y, Chambrey R, Warnock D, McDonough A (1996) Renal Na+/H+ exchanger isoforms and their regulation by thyroid hormone. Am J Physiol Renal Physiol 270:C585–C592

    Article  Google Scholar 

  • Barrière H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P (2003a) Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules. J Gen Physiol 122(2):177–190

    Article  Google Scholar 

  • Barrière H, Rubera I, Belfodil R, Tauc M, Tonnerieux N, Poujeol C, Barhanin J, Poujeol P (2003b) Swelling-activated chloride and potassium conductance in primary cultures of mouse proximal tubules. Implication of KCNE1 protein. J Membr Biol 193(3):153–170

    Article  Google Scholar 

  • Beck J, Breton S, Giebisch G, Laprade R (1992) Potassium conductance regulation by pH during volume regulation in rabbit proximal convoluted tubules. Am J Physiol Renal Physiol 263:F453–F458

    Article  Google Scholar 

  • Breton S, Marsolais M, Lapointe JY, Laprade R (1996) Cell volume increases of physiologic amplitude activate basolateral K and Cl conductances in the rabbit proximal convoluted tubule. J Am Soc Nephrol 7(10):2072–2087

    Google Scholar 

  • Gagnon J, Ouimet D, Nguyen H, Laprade R, Grimellec CL, Carriere S, Cardinal J (1982) Cell volume regulation in the proximal convoluted tubule. Am J Physiol Renal Physiol 243:F408–F415

    Article  Google Scholar 

  • Hoffman E, Dunham P (1995) Membrane mechanisms and intracellular signalling in cell volume regulation. Int Rev Cytol 161:173–262

    Article  Google Scholar 

  • Hoffman E, Lambert I, Pedersen S (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    Article  Google Scholar 

  • Kirk K, DiBona D, Schafer J (1987a) Regulatory volume decrease in perfused proximal nephron: evidence for a dumping of cell K\(^+\). Am J Physiol Renal Physiol 252:F933–F942

    Article  Google Scholar 

  • Kirk K, Schafer J, DiBona D (1987b) Parallel activation of K\(^+\) and Cl\(^-\) channels. Am J Physiol Renal Physiol 252:F922–F932

    Article  Google Scholar 

  • Layton A, Vallon V, Edwards A (2015) Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am J Physiol Renal Physiol 308(12):F1343–F1357

    Article  Google Scholar 

  • Layton A, Vallon V, Edwards A (2016) A computational model for simulating solute transport and oxygen consumption along the nephron. Am J Physiol Renal Physiol 311:F1378–F1390

    Article  Google Scholar 

  • Layton A, Vallon V, Edwards A (2016) Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am J Physiol Renal Physiol 310(11):F1269–F1283

    Article  Google Scholar 

  • Lohr J, Grantham J (1986) Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. J Clin Invest 78:1165–1172

    Article  Google Scholar 

  • Lohr J, Sullivan L Jr, Cragoe EJ, Grantham J (1989) Volume regulation determinants in isolated proximal tubules in hypertonic medium. Am J Physiol Renal Physiol 256:F622–F631

    Article  Google Scholar 

  • Mignen O, Le Gall C, Harvey B, Thomas S (1999) Volume regulation following hypotonic shock in isolated crypts of mouse distal colon. J Physiol 515(2):501–510

    Article  Google Scholar 

  • Miyata Y, Asano Y, Muto S (2001) Effects of P-glycoprotein on cell volume regulation in mouse proximal tubule. Am J Physiol Renal Physiol 280:F829–F837

    Article  Google Scholar 

  • Miyata Y, Asano Y, Muto S (2002) Hyperosmotic mannitol activates basolateral NHE in proximal tubule from P-glycoprotein null mice. Am J Physiol Renal Physiol 282:F718–F729

    Article  Google Scholar 

  • Miyata Y, Okada K, Ishibashi S, Asano Y, Muto S (2002) P-gp-induced modulation of regulatory volume increase occurs via PKC in mouse proximal tubule. Am J Physiol Renal Physiol 282:F65–F76

    Article  Google Scholar 

  • Moeendarbary E, Valon M, Fritzsche M, Harris A, Moulding D, Thrasher A, Stride E, Mahadevan L, Charras G (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12:253–261

    Article  Google Scholar 

  • Mohandas N, Evans E (1994) Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol 23:787–818

    Article  Google Scholar 

  • Okada Y (2004) Ion channels and transporters involved in cell volume regulation and sensor mechanisms. Cell Biochem Biophys 41:233–258

    Article  Google Scholar 

  • Sachs F, Sivaselvan M (2015) Cell volume control in three dimensions: water movement without solute movement. J Gen Physiol 145:373–380

    Article  Google Scholar 

  • Sands J, Layton H (2008) The urine concentrating mechanism and urea transporters. In: Alpern RJ, Hebert SC (eds) Seldin and Giebisch’s the kidney: physiology and pathophysiology, 4th edn. Elsevier, New York, pp 1143–1178

    Chapter  Google Scholar 

  • Schild L, Aronson P, Giebisch G (1991) Basolateral transport pathways for K+ and Cl- in rabbit proximal tubule: effects on cell volume. Am J Physiol (Renal Fluid Electrolyte Physiol 12) 260:F101–F109

    Article  Google Scholar 

  • Völkl H, Lang F (1988a) Electrophysiology of cell volume regulation in proximal tubules of the mouse kidney. Pflug Arch 411:514–519

    Article  Google Scholar 

  • Völkl H, Lang F (1988b) Ionic requirement for regulatory cell volume decrease in renal straight proximal tubules. Pflug Arch 412:1–6

    Article  Google Scholar 

  • Völkl H, Lang F (1990) Effect of potassium on cell volume regulation in renal straight proximal tubules. J Membr Biol 117:113–122

    Article  Google Scholar 

  • Weinstein A (1996) Coupling of entry to exit by peritubular K+ permeability in a mathematical model of rat proximal tubule. Am J Physiol Renal Physiol 271:F158–F168

    Article  Google Scholar 

  • Weinstein A (1999) Modeling epithelial cell homeostasis: steady-state analysis. Bull Math Biol 61:1065–1091

    Article  MATH  Google Scholar 

  • Weinstein A (2004) Modeling epithelial cell homeostasis: accessing recovery and control mechanisms. Bull Math Biol 66:1201–1240

    Article  MathSciNet  MATH  Google Scholar 

  • Weinstein A, Sontag E (2009) Modeling proximal tubule cell homeostasis: tracking changes in luminal flow. Bull Math Biol 71:1285–1322

    Article  MathSciNet  MATH  Google Scholar 

  • Weinstein A, Weinbaum S, Duan Y, Du ZP, Yan QS, Wang T (2007) Flow-dependent transport in a mathematical model of rat proximal tubule. Am J Physiol Renal Physiol 292:F1164–F1181

    Article  Google Scholar 

  • Welling P, Linshaw M (1988) Importance of anion in hypotonic volume regulation of rabbit proximal straight tubule. Am J Physiol Renal Physiol 255:F853–F860

    Article  Google Scholar 

  • Welling P, O’Neil R (1990) Cell swelling activates basolateral membrane Cl and K conductances in rabbit proximal tubule. Am J Physiol Renal Physiol 258(4):F951–F962

    Article  Google Scholar 

  • Zarogiannis S, Ilyaskin A, Baturina G, Katkova L, Medvedev D, Karpov D, Ershov A, Solenov E (2013) Regulatory volume decrease of rat kidney principal cells after successive hypo-osmotic shocks. Math Biosci 244:176–187

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, via grant R01DK106102 to AT Layton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Edwards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, A., Layton, A.T. Cell Volume Regulation in the Proximal Tubule of Rat Kidney. Bull Math Biol 79, 2512–2533 (2017). https://doi.org/10.1007/s11538-017-0338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0338-6

Keywords

Navigation