Skip to main content
Log in

Antibiotic Distribution into Cerebrospinal Fluid: Can Dosing Safely Account for Drug and Disease Factors in the Treatment of Ventriculostomy-Associated Infections?

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Ventriculostomy-associated infections, or ventriculitis, in critically ill patients are associated with considerable morbidity. Efficacious antibiotic dosing for the treatment of these infections may be complicated by altered antibiotic concentrations in the cerebrospinal fluid due to variable meningeal inflammation and antibiotic properties. Therefore, doses used to treat infections with a higher degree of meningeal inflammation (such as meningitis) may often fail to achieve equivalent exposures in patients with ventriculostomy-associated infections such as ventriculitis. This paper aims to review the disease burden, infection rates, and common pathogens associated with ventriculostomy-associated infections. This review also seeks to describe the disease- and drug-related factors that influence antibiotic distribution into cerebrospinal fluid and provide a critical appraisal of current dosing of antibiotics commonly used to treat these types of infections. A Medline search of relevant articles was conducted and used to support a review of cerebrospinal fluid penetration of vancomycin, including critical appraisal of the recent paper by Beach et al. recently published in this journal. We found that in the intensive care unit, ventriculostomy-associated infections are the most common and serious complication of external ventricular drain insertion and often result in prolonged patient stay and increased healthcare costs. Reported infection rates are extremely variable (between 0 and 45%), hindered by the inherent diagnostic difficulty. Both Gram-positive and Gram-negative organisms are associated with such infections and the rise of multi-drug-resistant pathogens means that effective treatment is an ongoing challenge. Disease factors that may need to be considered are reduced meningeal inflammation and the presence of critical illness; drug factors include physiochemical properties, degree of plasma–protein binding, and affinity to active transporter proteins present in the blood–cerebrospinal fluid barrier. The relationship between cerebrospinal fluid antibiotic exposures in the setting of ventriculostomy-associated infection and clinical response has not been fully elucidated for many of the antibiotics commonly used in its treatment. More thorough and clinically relevant investigations are needed to better define blood pharmacokinetic/pharmacodynamics targets and optimal therapeutic exposures for treatment of ventriculostomy-associated infections. It is hoped that this future research will be able to provide clearer recommendations for clinicians frequently faced with dosing-related dilemmas when treating patients with these challenging infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Conen A, Fux CA, Vajkoczy P, Trampuz A. Management of infections associated with neurosurgical implanted devices. Expert Rev Anti Infect Ther. 2017;15(3):241–55.

    Article  CAS  PubMed  Google Scholar 

  2. Srihawan C, Castelblanco RL, Salazar L, Wootton SH, Aguilera E, Ostrosky-Zeichner L, et al. Clinical characteristics and predictors of adverse outcome in adult and pediatric patients with healthcare-associated ventriculitis and meningitis. Open Forum Infect Dis. 2016;3(2):ofw077.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aarts MA, Brun-Buisson C, Cook DJ, Kumar A, Opal S, Rocker G, et al. Antibiotic management of suspected nosocomial ICU-acquired infection: does prolonged empiric therapy improve outcome? Intensive Care Med. 2007;33(8):1369–78.

    Article  PubMed  Google Scholar 

  4. Grgurich PE, Hudcova J, Lei Y, Sarwar A, Craven DE. Diagnosis of ventilator-associated pneumonia: controversies and working toward a gold standard. Curr Opin Infect Dis. 2013;26(2):140–50.

    Article  PubMed  Google Scholar 

  5. Fridkin S. Increasing prevalence of antimicrobial resistance in intensive care units. Crit Care Med. 2001;29(4):N64–8.

    Article  CAS  PubMed  Google Scholar 

  6. Seligman R, Ramos-Lima L, Oliveira V, Sanvicente C, Sartori J, Pacheco E. Risk factors for infection with multidrug-resistant bacteria in non-ventilated patients with hospital-acquired pneumonia. J Bras Pneumonol. 2013;39(3):339–48.

    Article  Google Scholar 

  7. Nau R, Sorgel F, Eiffert H. Penetration of drugs through the blood–cerebrospinal fluid/blood–brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beach J, Perrot J, Turgeon R, Ensom MH. Penetration of vancomycin into the cerebrospinal fluid: a systematic review. Clin Pharmacokinet. 2017. doi:10.1007/s40262-017-0548-y.

    PubMed  Google Scholar 

  9. Murphy RK, Liu B, Srinath A, Reynolds MR, Liu J, Craighead MC, et al. No additional protection against ventriculitis with prolonged systemic antibiotic prophylaxis for patients treated with antibiotic-coated external ventricular drains. J Neurosurg. 2015;122(5):1120–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tunkel AR, Hasbun R, Bhimraj A, Byers K, Kaplan SL, Michael Scheld W, et al. 2017 Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis. 2017. doi:10.1093/cid/ciw861.

    Google Scholar 

  11. Mounier R, Lobo D, Cook F, Fratani A, Attias A, Martin M, et al. Clinical, biological, and microbiological pattern associated with ventriculostomy-related infection: a retrospective longitudinal study. Acta Neurochir (Wien). 2015;157(12):2209–17 (discussion 17).

    Article  Google Scholar 

  12. Citerio G, Signorini L, Bronco A, Vargiolu A, Rota M, Latronico N. External ventricular and lumbar drain device infections in ICU patients. Crit Care Med. 2015;43(8):1630–7.

    Article  PubMed  Google Scholar 

  13. Gutierrez-Gonzalez R, Boto GR, Perez-Zamarron A. Cerebrospinal fluid diversion devices and infection. A comprehensive review. Eur J Clin Microbiol Infect Dis. 2012;31(6):889–97.

    Article  CAS  PubMed  Google Scholar 

  14. Mayhall C, Archer N, Lamb V, Spadora A, Bagget J, Ward J, et al. Ventriculostomy-related infections: a prospective epidemiologic study. N Engl J Med. 1984;310(9):553–9.

    Article  CAS  PubMed  Google Scholar 

  15. Lozier A, Sciaca R, Romagnoli M, Connolly E. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2002;51(1):170–82.

    Article  PubMed  Google Scholar 

  16. Gozal YM, Farley CW, Hanseman DJ, Harwell D, Magner M, Andaluz N, et al. Ventriculostomy-associated infection: a new, standardized reporting definition and institutional experience. Neurocrit Care. 2014;21(1):147–51.

    Article  PubMed  Google Scholar 

  17. Bader M, Littlejohns L, Palmer S. Ventriculostomy and intracranial pressure monitoring: in search of a 0% infection rate. Heart Lung. 1995;24(2):166–72.

    Article  CAS  PubMed  Google Scholar 

  18. Ramanan M, Lipman J, Shorr A, Shankar A. A meta-analysis of ventriculostomy-associated cerebrospinal fluid infections. BMC Infect Dis. 2015;8(15):3.

    Article  Google Scholar 

  19. Park P, Garton HJL, Kocan MJ, Thompson BG. Risk of infection with prolonged ventricular catheterization. Neurosurgery. 2004;55(3):594–601.

    Article  PubMed  Google Scholar 

  20. Hoogmoed J, van de Beek D, Coert BA, Horn J, Vandertop WP, Verbaan D. Clinical and laboratory characteristics for the diagnosis of bacterial ventriculitis after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2017;26(3):362–70.

    Article  CAS  PubMed  Google Scholar 

  21. World Health Organisation. Antimicrobial resistance: global report on surveillance. Geneva: World Health Organisation; 2014.

    Google Scholar 

  22. Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009;335(1):75–96.

    Article  PubMed  Google Scholar 

  23. Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2(4):492–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lutsar I, McCracken G, Friedland I. Antibiotic pharmacodynamics in cerebrospinal fluid. Clin Infect Dis. 1998;27(5):1117–27.

    Article  CAS  PubMed  Google Scholar 

  25. Poller B, Drewe J, Krahenbuhl S, Huwyler J, Gutmann H. Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. Cell Mol Neurobiol. 2010;30(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  26. Mouton J. General concepts of pharmacodynamics for anti-infective agents. In: Rotschafer J, Andes D, Rodvold K, editors. Antibiotic pharmacodynamics. New York: Springer; 2016.

    Google Scholar 

  27. Udy AA, Roberts JA, Lipman J. Implications of augmented renal clearance in critically ill patients. Nat Rev Nephrol. 2011;7(9):539–43.

    Article  CAS  PubMed  Google Scholar 

  28. Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, et al. Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit Care Med. 2014;42(3):520–7.

    Article  CAS  PubMed  Google Scholar 

  29. Udy AA, Jarrett P, Lassig-Smith M, Stuart J, Starr T, Dunlop R, et al. Augmented renal clearance in traumatic brain injury: a single-center observational study of atrial natriuretic peptide, cardiac output, and creatinine clearance. J Neurotrauma. 2017;34(1):137–44.

    Article  PubMed  Google Scholar 

  30. Barling R, Selkon J. The penetration of antibiotics into cerebrospinal fluid and brain tissue. J Antimicrob Chemother. 1978;4:203–27.

    Article  CAS  PubMed  Google Scholar 

  31. Cotta MO, Roberts JA. Pharmacokinetic and pharmacodynamic principles of antimicrobials. In: Laundy M, Gilchrist M, Whitney L, editors. Antimicrobial stewardship. London: Oxford University Press; 2016.

    Google Scholar 

  32. Law V, Knox C, Djoumbou Y, Jewison T, Guo A, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42(1):D1091–7.

    Article  CAS  PubMed  Google Scholar 

  33. Tauber M, Doroshov C, Hackbarth C, Rusnak M, Drake T, Sande M. Antibacterial activity of beta-lactam antibiotics in experimental meningitis due to Streptococcus pneumoniae. J Infect Dis. 1984;149(4):568–74.

    Article  CAS  PubMed  Google Scholar 

  34. Norrby R. A review of the penetration of antibiotics into CSF and its clinical significance. Scand J Infect Dis. 1978;14(Suppl):296–309.

    CAS  Google Scholar 

  35. Scheld W, Brodeur J, Sande M, Alliegro G. Comparison of cefoperazone with penicillin, ampicillin, gentamicin, and chloramphenicol in the therapy of experimental meningitis. Antimicrob Agents Chemother. 1982;22:652–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Quagliarello V, Scheld W. Treatment of bacterial meningitis. N Engl J Med. 1997;336(10):708–16.

    Article  CAS  PubMed  Google Scholar 

  37. Iselius L. Protein binding of ampicillin. Path analysis of a twin material. Hereditas. 1978;89(1):132.

    Article  CAS  PubMed  Google Scholar 

  38. Clumeck N, Thys J, Vanhoof R, Vanderlinden M, Butzler J, Yourassowsky E. Amoxicillin entry into human cerebrospinal fluid: comparison with ampicillin. Antimicrob Agents Chemother. 1978;14(4):531–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cherubin C, Eng R, Norrby R, Modai J, Humbert G, Overturf G. Penetration of newer cephalosporins into cerebrospinal fluid. Rev Infect Dis. 1989;11(4):526–48.

    Article  CAS  PubMed  Google Scholar 

  40. Nau R, Prange HW, Muth P, Mahr G, Menck S, Kolenda H, et al. Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob Agents Chemother. 1993;37(7):1518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakahara H, Oda T, Fukao E, Horiuchi I, Honma Y, Uchigata M. A case of meningococcal meningitis that was difficult to treat owing to concurrent ventriculitis. Rinsho Shinkeigaku. 2016;56(5):344–7.

    Article  PubMed  Google Scholar 

  42. Johan A, Hung L, Norlijah O. Salmonella enteritidis ventriculitis. Southeast Asian J Trop Med Public Health. 2013;44(3):456.

    CAS  PubMed  Google Scholar 

  43. Chapman T, Perry C. Cefepime: a review of its use in the management of hospitalised patients with pneumonia. Am J Respir Med. 2003;2(1):75–107.

    Article  CAS  PubMed  Google Scholar 

  44. Lodise TP Jr, Rhoney DH, Tam VH, McKinnon PS, Drusano GL. Pharmacodynamic profiling of cefepime in plasma and cerebrospinal fluid of hospitalized patients with external ventriculostomies. Diagn Microbiol Infect Dis. 2006;54(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  45. Lutsar I, Ahmed A, Friedland I, Trujillo M, Wubbel L, Olsen K, et al. Pharmacodynamics and bactericidal activity of ceftriaxone therapy in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother. 1997;41(11):2414–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Andes D, Craig W. Pharmacokinetics and pharmacodynamics of antibiotics in meningitis. Infect Dis Clin North Am. 1999;13:595–618.

    Article  CAS  PubMed  Google Scholar 

  47. Krueger W, Schroeder T, Hutchinson M, Hoffman E, Dieterich H, Heininger A, et al. Pharmacokinetics of meropenem in critically ill patients with acute renal failure treated by continuous hemodiafiltration. Antimicrob Agents Chemother. 1998;42(9):2421–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Blassmann U, Roehr A, Frey O, Vetter-Kerkhoff C, Thon N, Hope W, et al. Cerebrospinal fluid penetration of meropenem in neurocritical care patients with proven or suspected ventriculitis: a prospective observational study. Crit Care. 2016;20:343.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nau R, Lassek C, Kinzig-Schippers M, Thiel A, Prange HW, Fritz S. Disposition and elimination of meropenem in cerebrospinal fluid cultures of hydrocephalic patients with external ventriculostomy. Antimicrob Agents Chemother. 1998;42(8):2012–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsuda T, Ikawa K, Ikeda K, Morikawa N, Tsumura R, Shibukawa M, et al. LC method for the determination of meropenem in cerebrospinal fluid: application to therapeutic drug monitoring. Chromatographia. 2009;69(9–10):1031–4.

    Article  CAS  Google Scholar 

  51. Chou Y, Yang Y, Chen J, Kuo C, Chen S. Quantification of meropenem in plasma and cerebrospinal fluid by micellar electrokinetic capillary chromatography and application in bacterial meningitis patients. J Chromatogr B Anal Technol Biomed Life. 2007;856(1):294–301.

    Article  CAS  Google Scholar 

  52. Dagan R, Velghe L, Rodda J, Klugman K. Penetration of meropenem into the cerebrospinal fluid of patients with inflamed meninges. J Antimicrob Chemother. 1994;34(1):175–9.

    Article  CAS  PubMed  Google Scholar 

  53. Ulldemolins M, Roberts JA, Rello J, Paterson D, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet. 2011;50(2):99–110.

    Article  CAS  PubMed  Google Scholar 

  54. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Växjö: EUCAST; 2017.

    Google Scholar 

  55. Ng K, Mabasa VH, Chow I, Ensom MH. Systematic review of efficacy, pharmacokinetics, and administration of intraventricular vancomycin in adults. Neurocrit Care. 2014;20(1):158–71.

    Article  CAS  PubMed  Google Scholar 

  56. Nau R, Scholz P, Sharifi S, Rohde S, Kolenda H, Prange HW. Netilmicin cerebrospinal fluid concentrations after an intravenous infusion of 400 mg in patients without meningeal inflammation. J Antimicrob Chemother. 1993;32:893–6.

    Article  CAS  PubMed  Google Scholar 

  57. Bailey D, Briggs J. Gentamicin and tobramycin binding to human serum in vitro. J Anal Toxicol. 2004;28:187–9.

    Article  CAS  PubMed  Google Scholar 

  58. Brunnemann S, Segal J. Amikacin serum protein binding in spinal cord injury. Life Sci. 1991;49(2):1–5.

    Article  Google Scholar 

  59. LeBras M, Chow I, Mabasa VH, Ensom MHH. Systematic review of efficacy, pharmacokinetics, and administration of intraventricular aminoglycosides in adults. Neurocrit Care. 2016;25(3):492–507.

    Article  CAS  PubMed  Google Scholar 

  60. Kourtopoulos H, Holm S. Intraventricular treatment of Serratia marcescens meningitis with gentamicin: pharmacokinetic studies of gentamicin concentration in one case. Scand J Infect Dis. 1976;8:57–60.

    CAS  PubMed  Google Scholar 

  61. Kaiser A, McGee Z. Aminoglycoside therapy of gram-negative bacillary meningitis. N Engl J Med. 1975;293:1215–20.

    Article  CAS  PubMed  Google Scholar 

  62. Barnes B, Wiederhold N, Micek S, Polish L, Ritchie D. Enterobacter cloacae ventriculitis successfully treated with cefepime and gentamicin: case report and review of the literature. Pharmacotherapy. 2003;23:537–42.

    Article  PubMed  Google Scholar 

  63. Wald S, McLaurin R. Cerebrospinal fluid antibiotic concentrations during treatment of shunt infections. J Neurosurg. 1980;52:41–6.

    Article  CAS  PubMed  Google Scholar 

  64. Mombelli G, Klastersky J, Coppens L, Daneau D, Nubourgh Y. Gram-negative bacillary meningitis in neurosurgical patients. J Neurosurg. 1983;59:634–41.

    Article  CAS  PubMed  Google Scholar 

  65. Ziai WC, Lewin JJ. Improving the role of intraventricular antimicrobial agents in the management of meningitis. Curr Opin Neurol. 2009;22(3):277–82.

    Article  CAS  PubMed  Google Scholar 

  66. Zhanel G. A review of new fluoroquinolones: focus on their use in respiratory tract infections. Treat Respir Med. 2006;5(6):437–65.

    Article  CAS  PubMed  Google Scholar 

  67. Peloquin CA, Hadad DJ, Molino LP, Palaci M, Boom WH, Dietze R, et al. Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2008;52(3):852–7.

    Article  CAS  PubMed  Google Scholar 

  68. Gogos C, Maraziotis T, Papadakis N, Beerman D, Siamplis D, Bassaris H. Penetration of ciprofloxacin into human cerebrospinal fluid in patients with inflamed and non-inflamed meninges. Eur J Clin Microbiol Infect Dis. 1991;10(6):511–4.

    Article  CAS  PubMed  Google Scholar 

  69. Lipman J, Allworth A, Wallis S. Cerebrospinal fluid penetration of high doses of intravenous ciprofloxacin in meningitis. Clin Infect Dis. 2000;31(5):1131–3.

    Article  CAS  PubMed  Google Scholar 

  70. Pea F, Pavan F, Nascimben E, Benetton C, Scotton PG, Vaglia A, et al. Levofloxacin disposition in cerebrospinal fluid in patients with external ventriculostomy. Antimicrob Agents Chemother. 2003;47(10):3104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roberts JA, Cotta MO, Cojutti P, Lugano M, Della Rocca G, Pea F. Does critical illness change levofloxacin pharmacokinetics? Antimicrob Agents Chemother. 2015;60(3):1459–63.

    Article  PubMed  CAS  Google Scholar 

  72. Rayner C, Forrest A, Meagher A, Birmingham M, Schentag J. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42(15):1411–23.

    Article  CAS  PubMed  Google Scholar 

  73. Luque S, Grau S, Alvarez-Lerma F, Ferrández O, Campillo N, Horcajada JP, et al. Plasma and cerebrospinal fluid concentrations of linezolid in neurosurgical critically ill patients with proven or suspected central nervous system infections. Int J Antimicrob Agents. 2014;44(5):409–15.

    Article  CAS  PubMed  Google Scholar 

  74. Adembri C, Fallani S, Cassetta MI, Arrigucci S, Ottaviano A, Pecile P, et al. Linezolid pharmacokinetic/pharmacodynamic profile in critically ill septic patients: intermittent versus continuous infusion. Int J Antimicrob Agents. 2008;31(2):122–9.

    Article  CAS  PubMed  Google Scholar 

  75. Swoboda S, Ober MC, Lichtenstern C, Saleh S, Schwenger V, Sonntag HG, et al. Pharmacokinetics of linezolid in septic patients with and without extended dialysis. Eur J Clin Pharmacol. 2010;66(3):291–8.

    Article  CAS  PubMed  Google Scholar 

  76. Morata L, Cuesta M, Rojas J, Rodriguez S, Brunet M, Casals G, et al. Risk factors for a low linezolid trough plasma concentration in acute infections. Antimicrob Agents Chemother. 2013;57(4):1913–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zoller M, Barbara M, Cyrill H, Neugebauer C, Döbbeler G, Nagel D, et al. Variability of linezolid concentrations after standard dosing in critically ill patients—a prospective observational study. Crit Care. 2014;18(4):R148.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Garcia B, Luque S, Roberts JA, Grau S. Pharmacokinetics and preliminary safety of high dose linezolid for the treatment of Gram-positive bacterial infections. J Infect. 2015;71(5):604–7.

    Article  Google Scholar 

  79. Antachopoulos C, Karvanen M, Iosifidis E, Jansson B, Plachouras D, Cars O, et al. Serum and cerebrospinal fluid levels of colistin in pediatric patients. Antimicrob Agents Chemother. 2010;54(9):3985–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jimenez-Mejias ME, Pichardo-Guerrero C, Marquez-Rivas FJ, Martin-Lozano D, Prados T, Pachon J. Cerebrospinal fluid penetration and pharmacokinetic/pharmacodynamic parameters of intravenously administered colistin in a case of multidrug-resistant Acinetobacter baumannii meningitis. Eur J Clin Microbiol Infect Dis. 2002;21(3):212–4.

    Article  CAS  PubMed  Google Scholar 

  81. Falagas M, Bliziotis I, Tam V. Intraventricular or intrathecal use of polymyxins in patients with Gram-negative meningitis: a systematic review of the available evidence. Int J Antimicrob Agents. 2007;29(1):9–25.

    Article  CAS  PubMed  Google Scholar 

  82. Paul M, Carmeli Y, Durante-Mangoni E, Mouton JW, Tacconelli E, Theuretzbacher U, et al. Combination therapy for carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother. 2014;69(9):2305–9.

    Article  CAS  PubMed  Google Scholar 

  83. Imberti R, Cusato M, Accetta G, Marino V, Procaccio F, Del Gaudio A, et al. Pharmacokinetics of colistin in cerebrospinal fluid after intraventricular administration of colistin methanesulfonate. Antimicrob Agents Chemother. 2012;56(8):4416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tunkel A, Hartman B, Kaplan S, Kaufman B, Roos K, Scheld M, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267–84.

    Article  PubMed  Google Scholar 

  85. Kuhen E, Pfeifer G, Frenkell C. Penetration of fosfomycin into cerebrospinal fluid across non-inflamed and inflamed meninges. Infection. 1987;15(6):422–4.

    Article  Google Scholar 

  86. Pfausler B, Spiss H, Dittrich P, Zeitlinger M, Schmutzhard E, Joukhadar C. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antimicrob Chemother. 2004;53(5):848–52.

    Article  CAS  PubMed  Google Scholar 

  87. Rafailidis P, Falagas M. Options for treating carbapenem-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2014;27(6):479–83.

    Article  CAS  PubMed  Google Scholar 

  88. Ellard G, Humphries M, Allen B. Cerebrospinal fluid drug concentrations and the treatment of tuberculous meningitis. Am Rev Respir Dis. 1993;148(3):650–5.

    Article  CAS  PubMed  Google Scholar 

  89. Nahata M, Fan-Harvard P, Barson W, Bartkowski H, Kosnik E. Pharmacokinetics, cerebrospinal fluid concentration, and safety of intravenous rifampin in pediatric patients undergoing shunt placements. Eur J Clin Pharmacol. 1990;38(5):515–7.

    Article  CAS  PubMed  Google Scholar 

  90. Nau R, Prange HW, Menck S, Kolenda H, Visser K, Seydel J. Penetration of rifampicin into the cerebrospinal fluid of adults with uninflamed meninges. J Antimicrob Chemother. 1992;29(6):719–24.

    Article  CAS  PubMed  Google Scholar 

  91. Klugman K, Friedland I, Bradley J. Bactericidal activity against cephalosporin-resistant Streptococcus pneumoniae in cerebrospinal fluid of children with acute bacterial meningitis. Antimicrob Agents Chemother. 1995;39(9):1988–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu C, Bayer A, Cosgrove S, Daum R, Fridkin S, Gorwitz R, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55.

    Article  PubMed  Google Scholar 

  93. Riser M, Bland C, Rudisil C, Bookstaver B. Cerebrospinal fluid penetration of high-dose daptomycin in suspected Staphylococcus aureus meningitis. Ann Pharmacother. 2010;44(11):1832–5.

    Article  PubMed  Google Scholar 

  94. Kullar R, Chin JN, Edwards DJ, Parker D, Coplin WM, Rybak MJ. Pharmacokinetics of single-dose daptomycin in patients with suspected or confirmed neurological infections. Antimicrob Agents Chemother. 2011;55(7):3505–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mueller SW, Kiser TH, Anderson TA, Neumann RT. Intraventricular daptomycin and intravenous linezolid for the treatment of external ventricular-drain-associated ventriculitis due to vancomycin-resistant Enterococcus faecium. Ann Pharmacother. 2012;46(12):e35.

    Article  PubMed  Google Scholar 

  96. Rodvold KA, Gotfried MH, Cwik M, Korth-Bradley JM, Dukart G, Ellis-Grosse EJ. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J Antimicrob Chemother. 2006;58(6):1221–9.

    Article  CAS  PubMed  Google Scholar 

  97. Van Wart SA, Cirincione BB, Ludwig EA, Meagher AK, Korth-Bradley JM, Owen JS. Population pharmacokinetics of tigecycline in healthy volunteers. J Clin Pharmacol. 2007;47(6):727–37.

    Article  PubMed  CAS  Google Scholar 

  98. Lengerke C, Haap M, Mayer F, Kanz L, Kinzig M, Schumacher U, et al. Low tigecycline concentrations in the cerebrospinal fluid of a neutropenic patient with inflamed meninges. Antimicrob Agents Chemother. 2011;55(1):449–50.

    Article  CAS  PubMed  Google Scholar 

  99. Lauretti L, D’Alessandris QG, Fantoni M, D’Inzeo T, Fernandez E, Pallini R, et al. First reported case of intraventricular tigecycline for meningitis from extremely drug-resistant Acinetobacter baumannii. J Neurosurg. 2016;19:1–4.

    Google Scholar 

  100. Walti LN, Conen A, Coward J, Jost GF, Trampuz A. Characteristics of infections associated with external ventricular drains of cerebrospinal fluid. J Infect. 2013;66(5):424–31.

    Article  PubMed  Google Scholar 

  101. Li X, Wu Y, Sun S, Mei S, Wang J, Wang Q, et al. Population pharmacokinetics of vancomycin in postoperative neurosurgical patients. J Pharm Sci. 2015;104(11):3960–7.

    Article  CAS  PubMed  Google Scholar 

  102. Craig W. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am. 2003;17(3):479–501.

    Article  PubMed  Google Scholar 

  103. Bowers D, Schilling A, Tam V. Aminoglycoside pharmacodynamics. In: Rotschafer J, Andes D, Rodvold K, editors. Antibiotic pharmacodynamics. New York: Springer; 2016. p. 199–229.

    Chapter  Google Scholar 

  104. Rybak M. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis. 2006;42(S1):S35–9.

    Article  CAS  PubMed  Google Scholar 

  105. Andes D, van Ogtrop ML, Peng J, Craig WA. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother. 2002;46(11):3484–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wenzler E, Liao S, Rodvold K. Pharmacodynamics of daptomycin. In: Rotschafer J, Andes D, Rodvold K, editors. Antibiotic pharmacodynamics. New York: Springer; 2016. p. 317–43.

    Chapter  Google Scholar 

  107. Rubino CM, Bhavnani SM, Forrest A, Dukart G, Dartois N, Cooper A, et al. Pharmacokinetics–pharmacodynamics of tigecycline in patients with community-acquired pneumonia. Antimicrob Agents Chemother. 2012;56(1):130–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Lipman.

Ethics declarations

Conflict of interest

The authors declare that they have no financial or other conflicts of interest in relation to this research and its publication.

Ethical approval

No clinical research was conducted for the purposes of publication of this article and no ethical approval was necessary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumta, N., Roberts, J.A., Lipman, J. et al. Antibiotic Distribution into Cerebrospinal Fluid: Can Dosing Safely Account for Drug and Disease Factors in the Treatment of Ventriculostomy-Associated Infections?. Clin Pharmacokinet 57, 439–454 (2018). https://doi.org/10.1007/s40262-017-0588-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0588-3

Navigation