Advertisement

Current Anesthesiology Reports

, Volume 9, Issue 2, pp 135–143 | Cite as

Renal Replacement Therapy in Critical Care: When to Start?

  • Morten H. BestleEmail author
  • Theis Skovsgaard Itenov
  • Rasmus E. Berthelsen
Critical Care Anesthesia (BS Rasmussen, Section Editor)
  • 32 Downloads
Part of the following topical collections:
  1. Critical Care Anesthesia

Abstract

Purpose of Review

Aside from absolute indications, the optimal timing of renal replacement therapy (RRT) in critical care is unknown. In this review, we discuss initiation of RRT in relation to both severity of acute kidney injury (AKI) and fluid accumulation.

Recent Findings

Results from studies of early vs. late RRT are conflicting, and no definitive conclusions have been made. Observational data points to fluid accumulation as a detrimental factor in critical illness and recent studies have shown that early fluid removal with RRT is feasible and could potentially improve survival.

Summary

There is a gap in the knowledge regarding when to initiate RRT in the absence of acute life-threatening complications. Recent studies of fluid accumulation in critically ill patients indicate the importance of avoiding fluid overload, and RRT might play an increasing role in the management of fluid balance in critical care.

Keywords

Acute kidney injury Renal replacement therapy Fluid balance Fluid overload Critically ill Review 

Notes

Compliance with Ethical Standards

Conflict of Interest

Morten H. Bestle, Theis Skovsgaard Itenov, and Rasmus E. Berthelsen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–23.  https://doi.org/10.1007/s00134-015-3934-7.CrossRefGoogle Scholar
  2. 2.
    Kidney Disease: Improving Global Outcomes (KDIGO). Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1.  https://doi.org/10.1038/kisup.2012.1.CrossRefGoogle Scholar
  3. 3.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative Workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.  https://doi.org/10.1186/cc2872.CrossRefGoogle Scholar
  4. 4.
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.  https://doi.org/10.1186/cc5713.CrossRefGoogle Scholar
  5. 5.
    Beall D, Bywaters EG, Belsey RH, Miles JA. Crush injury with renal failure. Br Med J. 1941;1:432–4.CrossRefGoogle Scholar
  6. 6.
    Nisula S, Kaukonen K-M, Vaara ST, Korhonen A-M, Poukkanen M, Karlsson S, et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 2013;39:420–8.  https://doi.org/10.1007/s00134-012-2796-5.CrossRefGoogle Scholar
  7. 7.
    Gammelager H, Christiansen CF, Johansen MB, Tønnesen E, Jespersen B, Sørensen HT. One-year mortality among Danish intensive care patients with acute kidney injury: a cohort study. Crit Care. 2012;16:R124.  https://doi.org/10.1186/cc11420.CrossRefGoogle Scholar
  8. 8.
    Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G. Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol. 2015;26:2231–8.  https://doi.org/10.1681/ASN.2014070724.CrossRefGoogle Scholar
  9. 9.
    Wan L, Bagshaw SM, Langenberg C, Saotome T, May C, Bellomo R. Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med. 2008;36:S198–203.  https://doi.org/10.1097/CCM.0b013e318168ccd5.CrossRefGoogle Scholar
  10. 10.
    Levey AS, Stevens LA, Frcp C, Schmid CH, Zhang YL, Iii AFC, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.CrossRefGoogle Scholar
  11. 11.
    Levey AS, Inker LA. Assessment of glomerular filtration rate in health and disease: a state of the art review. Clin Pharmacol Ther. 2017;102:405–19.  https://doi.org/10.1002/cpt.729.CrossRefGoogle Scholar
  12. 12.
    Stevens LA, Coresh J, Greene T, Levey a S. Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med. 2006;354:2473–83.CrossRefGoogle Scholar
  13. 13.
    KDIGO. KDIGO. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2012;2013:3.Google Scholar
  14. 14.
    Jensen J-US, Hein L, Lundgren B, Bestle MH, Mohr T, Andersen MH, et al. Kidney failure related to broad-spectrum antibiotics in critically ill patients: secondary end point results from a 1200 patient randomised trial. BMJ Open. 2012;2:e000635.  https://doi.org/10.1136/bmjopen-2011-000635.CrossRefGoogle Scholar
  15. 15.
    Itenov TS, Berthelsen RE, Jensen J-U, Gerds TA, Pedersen LM, Strange D, et al. Predicting recovery from acute kidney injury in critically ill patients: development and validation of a prediction model. Crit Care Resusc. 2018;20:54–60.Google Scholar
  16. 16.
    Legrand M, Payen D. Understanding urine output in critically ill patients. Ann Intensive Care. 2011;1:13.  https://doi.org/10.1186/2110-5820-1-13.CrossRefGoogle Scholar
  17. 17.
    Griffin BR, Gist KM, Faubel S. Current status of novel biomarkers for the diagnosis of acute kidney injury: a historical perspective. J Intensive Care Med. 2019;17:088506661882453.  https://doi.org/10.1177/0885066618824531.CrossRefGoogle Scholar
  18. 18.
    Fayad AI, Buamscha DG, Ciapponi A. Intensity of continuous renal replacement therapy for acute kidney injury. Cochrane Database Syst Rev. 2016;10:CD010613.  https://doi.org/10.1002/14651858.CD010613.pub2.Google Scholar
  19. 19.
    Rabindranath KS, Adams J, MacLeod AM, Muirhead N. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev 2007:CD003773. doi: https://doi.org/10.1002/14651858.CD003773.pub3.
  20. 20.
    Wierstra BT, Kadri S, Alomar S, Burbano X, Barrisford GW, Kao RLC. The impact of “early” versus “late” initiation of renal replacement therapy in critical care patients with acute kidney injury: a systematic review and evidence synthesis. Crit Care. 2016;20:122.  https://doi.org/10.1186/s13054-016-1291-8.CrossRefGoogle Scholar
  21. 21.
    •• Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315:2190–9.  https://doi.org/10.1001/jama.2016.5828 Recent, large randomized clinical trial. CrossRefGoogle Scholar
  22. 22.
    • Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Verney C, Pons B, et al. Timing of renal support and outcome of septic shock and acute respiratory distress syndrome. A post hoc analysis of the AKIKI randomized clinical trial. Am J Respir Crit Care Med. 2018;198:58–66.  https://doi.org/10.1164/rccm.201706-1255OC Follow-up study on recent large randomized clinical trial. CrossRefGoogle Scholar
  23. 23.
    •• Barbar SD, Clere-Jehl R, Bourredjem A, Hernu R, Montini F, Bruyère R, et al. Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med. 2018;379:1431–42.  https://doi.org/10.1056/NEJMoa1803213. Recent, large randomized clinical trial. CrossRefGoogle Scholar
  24. 24.
    •• Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375:122–33.  https://doi.org/10.1007/BF01123134 Recent, large randomized clinical trial. CrossRefGoogle Scholar
  25. 25.
    Bagshaw SM, Lamontagne F, Joannidis M, Wald R. When to start renal replacement therapy in critically ill patients with acute kidney injury: comment on AKIKI and ELAIN. Crit Care. 2016;20:245.  https://doi.org/10.1186/s13054-016-1424-0.CrossRefGoogle Scholar
  26. 26.
    Mavrakanas TA, Aurian-Blajeni DE, Charytan DM. Early versus late initiation of renal replacement therapy in patients with acute kidney injury: a meta-analysis of randomised clinical trials. Swiss Med Wkly. 2017;147:w14507.  https://doi.org/10.4414/smw.2017.14507.Google Scholar
  27. 27.
    Xu Y, Gao J, Zheng X, Zhong B, Na Y, Wei J. Timing of initiation of renal replacement therapy for acute kidney injury: a systematic review and meta-analysis of randomized-controlled trials. Clin Exp Nephrol. 2017;21:552–62.  https://doi.org/10.1007/s10157-016-1316-2.CrossRefGoogle Scholar
  28. 28.
    Yang X, Tu G, Zheng J, Shen B, Ma G, Hao G, et al. A comparison of early versus late initiation of renal replacement therapy for acute kidney injury in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. BMC Nephrol. 2017;18:264.  https://doi.org/10.1186/s12882-017-0667-6.CrossRefGoogle Scholar
  29. 29.
    Moreira FT, Palomba H, Chaves RC de F, Bouman C, Schultz MJ, Serpa Neto A. Early versus delayed initiation of renal replacement therapy for acute kidney injury: an updated systematic review, meta-analysis, meta-regression and trial sequential analysis of randomized controlled trials. Rev Bras Ter Intensiva. 2018;30:376–84.  https://doi.org/10.5935/0103-507X.20180054.CrossRefGoogle Scholar
  30. 30.
    Wang X, Jie Yuan W. Timing of initiation of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Ren Fail. 2012;34:396–402.  https://doi.org/10.3109/0886022X.2011.647371.CrossRefGoogle Scholar
  31. 31.
    Bhatt GC, Das RR. Early versus late initiation of renal replacement therapy in patients with acute kidney injury—a systematic review & meta-analysis of randomized controlled trials. BMC Nephrol. 2017;18:78.  https://doi.org/10.1186/s12882-017-0486-9.CrossRefGoogle Scholar
  32. 32.
    • Meersch M, Küllmar M, Schmidt C, Gerss J, Weinhage T, Margraf A, et al. Long-term clinical outcomes after early initiation of RRT in critically ill patients with AKI. J Am Soc Nephrol. 2018;29:1011–9.  https://doi.org/10.1681/ASN.2017060694 Follow-up study on recent large randomized clinical trial. Google Scholar
  33. 33.
    Butcher B, Liu K. Fluid overload in AKI-epiphenomenon or putative effect on mortality? Curr Opin Crit Care. 2012;18:593–8.  https://doi.org/10.1097/MCC.0b013e32835a1c44.Fluid.CrossRefGoogle Scholar
  34. 34.
    Combes A, Bréchot N, Amour J, Cozic N, Lebreton G, Guidon C, et al. Early high-volume hemofiltration versus standard care for post-cardiac surgery shock. The HEROICS study. Am J Respir Crit Care Med. 2015;192:1179–90.  https://doi.org/10.1164/rccm.201503-0516OC.CrossRefGoogle Scholar
  35. 35.
    Zhang L, Chen Z, Diao Y, Yang Y, Fu P. Associations of fluid overload with mortality and kidney recovery in patients with acute kidney injury: a systematic review and meta-analysis. J Crit Care. 2015;30:860.e7–860.e13.  https://doi.org/10.1016/j.jcrc.2015.03.025.CrossRefGoogle Scholar
  36. 36.
    Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, et al. An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. augmented level of replacement therapy trial. Crit Care Med. 2012;40:1753–60.  https://doi.org/10.1097/CCM.0b013e318246b9c6.CrossRefGoogle Scholar
  37. 37.
    Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76:422–7.  https://doi.org/10.1038/ki.2009.159.CrossRefGoogle Scholar
  38. 38.
    Fülöp T, Pathak MB, Schmidt DW, Lengvárszky Z, Juncos JP, Lebrun CJ, et al. Volume-related weight gain and subsequent mortality in acute renal failure patients treated with continuous renal replacement therapy. ASAIO J. 2010;56:333–7.  https://doi.org/10.1097/MAT.0b013e3181de35e4.Google Scholar
  39. 39.
    Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD, National Heart, Lung and BIARDSN. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol. 2011;6:966–73.  https://doi.org/10.2215/CJN.08781010.CrossRefGoogle Scholar
  40. 40.
    Heung M, Wolfgram DF, Kommareddi M, Hu Y, Song PX, Ojo AO. Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury. Nephrol Dial Transplant. 2012;27:956–61.  https://doi.org/10.1093/ndt/gfr470.CrossRefGoogle Scholar
  41. 41.
    Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12:R74.  https://doi.org/10.1186/cc6916.CrossRefGoogle Scholar
  42. 42.
    Schmidt M, Bailey M, Kelly J, Hodgson C, Cooper DJ, Scheinkestel C, et al. Impact of fluid balance on outcome of adult patients treated with extracorporeal membrane oxygenation. Intensive Care Med. 2014;40:1256–66.  https://doi.org/10.1007/s00134-014-3360-2.CrossRefGoogle Scholar
  43. 43.
    Silversides JA, Pinto R, Kuint R, Wald R, Hladunewich MA, Lapinsky SE, et al. Fluid balance, intradialytic hypotension, and outcomes in critically ill patients undergoing renal replacement therapy: a cohort study. Crit Care. 2014;18:624.  https://doi.org/10.1186/s13054-014-0624-8.CrossRefGoogle Scholar
  44. 44.
    Teixeira C, Garzotto F, Piccinni P, Brienza N, Iannuzzi M, Gramaticopolo S, et al. Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care. 2013;17:R14.  https://doi.org/10.1186/cc12484.CrossRefGoogle Scholar
  45. 45.
    Vaara ST, Korhonen A-M, Kaukonen K-M, Nisula S, Inkinen O, Hoppu S, et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care. 2012;16:R197.  https://doi.org/10.1186/cc11682.CrossRefGoogle Scholar
  46. 46.
    Neyra JA, Li X, Canepa-Escaro F, Adams-Huet B, Toto RD, Yee J, et al. Cumulative fluid balance and mortality in septic patients with or without acute kidney injury and chronic kidney disease. Crit Care Med. 2016;44:1891–900.  https://doi.org/10.1097/CCM.0000000000001835.CrossRefGoogle Scholar
  47. 47.
    Berthelsen RE, Perner A, Jensen AK, Jensen J-U, Bestle MH. Fluid accumulation during acute kidney injury in the intensive care unit. Acta Anaesthesiol Scand. 2018;62:780–90.  https://doi.org/10.1111/aas.13105.CrossRefGoogle Scholar
  48. 48.
    Balakumar V, Murugan R, Sileanu FE, Palevsky P, Clermont G, Kellum JA. Both positive and negative fluid balance may be associated with reduced long-term survival in the critically ill. Crit Care Med. 2017;45:e749–57.  https://doi.org/10.1097/CCM.0000000000002372.CrossRefGoogle Scholar
  49. 49.
    Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256:18–24.  https://doi.org/10.1097/SLA.0b013e318256be72.CrossRefGoogle Scholar
  50. 50.
    Cruces P, Salas C, Lillo P, Salomon T, Lillo F, Hurtado DE. The renal compartment: a hydraulic view. Intensive Care Med Exp. 2014;2:26.  https://doi.org/10.1186/s40635-014-0026-x.CrossRefGoogle Scholar
  51. 51.
    Firth JD, Raine AE, Ledingham JG. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet (London, England). 1988;1:1033–5.  https://doi.org/10.1016/S0140-6736(88)91851-X.CrossRefGoogle Scholar
  52. 52.
    Malbrain MLNG, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anestezjol Intens Ter. 2014;46:361–80.  https://doi.org/10.5603/AIT.2014.0060.CrossRefGoogle Scholar
  53. 53.
    Silversides JA, Major E, Ferguson AJ, Mann EE, McAuley DF, Marshall JC, et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43:155–70.  https://doi.org/10.1007/s00134-016-4573-3.CrossRefGoogle Scholar
  54. 54.
    Hjortrup PB, Haase N, Bundgaard H, Thomsen SL, Winding R, Pettilä V, et al. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med. 2016;42:1695–705.  https://doi.org/10.1007/s00134-016-4500-7.CrossRefGoogle Scholar
  55. 55.
    Rosner MH, Ostermann M, Murugan R, Prowle JR, Ronco C, J a K, et al. Indications and management of mechanical fluid removal in critical illness. Br J Anaesth. 2014;113:764–71.  https://doi.org/10.1093/bja/aeu297.CrossRefGoogle Scholar
  56. 56.
    • Berthelsen RE, Perner A, Jensen AK, Rasmussen BS, Jensen JU, Wiis J, et al. Forced fluid removal in intensive care patients with acute kidney injury: the randomised FFAKI feasibility trial. Acta Anaesthesiol Scand. 2018;62:936–44.  https://doi.org/10.1111/aas.13124. Study of goal directed fluid removal in AKI—a possible indication for RRT. CrossRefGoogle Scholar
  57. 57.
    Murugan R, Balakumar V, Kerti SJ, Priyanka P, Chang C-CH, Clermont G, et al. Net ultrafiltration intensity and mortality in critically ill patients with fluid overload. Crit Care. 2018;22:223.  https://doi.org/10.1186/s13054-018-2163-1.CrossRefGoogle Scholar
  58. 58.
    Chawla LS, Davison DL, Brasha-Mitchell E, Koyner JL, Arthur JM, Shaw AD, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care. 2013;17:R207.  https://doi.org/10.1186/cc13015.CrossRefGoogle Scholar
  59. 59.
    Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369:1243–51.  https://doi.org/10.1056/NEJMra1208627.CrossRefGoogle Scholar
  60. 60.
    ADQI XII Investigators Group. ADQI 12 Figures. Acute Dial Qual Initiat 12 2013. http://www.adqi.org (accessed January 7, 2019).
  61. 61.
    Hoste EA, Maitland K, Brudney CS, Mehta R, Vincent J-L, Yates D, et al. Four phases of intravenous fluid therapy: a conceptual model. Br J Anaesth. 2014;113:740–7.  https://doi.org/10.1093/bja/aeu300.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Morten H. Bestle
    • 1
    • 2
    Email author
  • Theis Skovsgaard Itenov
    • 1
    • 3
  • Rasmus E. Berthelsen
    • 4
  1. 1.Department of Anesthesiology and Intensive Care, Nordsjaellands Hospital, HilleroedUniversity of CopenhagenHilleroedDenmark
  2. 2.Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Anesthesiology and Intensive Care, Hvidovre HospitalUniversity of CopenhagenCopenhagenDenmark
  4. 4.Department of Anesthesiology and Intensive Care, Zealand University Hospital, RoskildeUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations