Skip to main content

Advertisement

Log in

Delivering optimal renal replacement therapy to critically ill patients with acute kidney injury

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Critical illness is often complicated by acute kidney injury (AKI). In patients with severe AKI, renal replacement therapy (RRT) is deployed to address metabolic dysfunction and volume excess until kidney function recovers. This review is intended to provide a comprehensive update on key aspects of RRT prescription and delivery to critically ill patients. Recently completed trials have enhanced the evidence base regarding several RRT practices, most notably the timing of RRT initiation and anticoagulation for continuous therapies. Better evidence is still needed to clarify several aspects of care including optimal targets for ultrafiltration and effective strategies for RRT weaning and discontinuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerda J, Chawla LS (2018) Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 14(10):607–625

    Article  CAS  PubMed  Google Scholar 

  2. Bagshaw SM, Darmon M, Ostermann M, Finkelstein FO, Wald R, Tolwani AJ, Goldstein SL, Gattas DJ, Uchino S, Hoste EA, Gaudry S (2017) Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury. Intensive Care Med 43(6):841–854

    Article  PubMed  Google Scholar 

  3. Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstadt H, Boanta A, Gerss J, Meersch M (2016) Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA 315(20):2190–2199

    Article  CAS  PubMed  Google Scholar 

  4. Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E, Boyer A, Chevrel G, Lerolle N, Carpentier D, de Prost N, Lautrette A, Bretagnol A, Mayaux J, Nseir S, Megarbane B, Thirion M, Forel JM, Maizel J, Yonis H, Markowicz P, Thiery G, Tubach F, Ricard JD, Dreyfuss D, Group AS (2016) Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med 375(2):122–133

    Article  Google Scholar 

  5. Barbar SD, Clere-Jehl R, Bourredjem A, Hernu R, Montini F, Bruyere R, Lebert C, Bohe J, Badie J, Eraldi JP, Rigaud JP, Levy B, Siami S, Louis G, Bouadma L, Constantin JM, Mercier E, Klouche K, du Cheyron D, Piton G, Annane D, Jaber S, van der Linden T, Blasco G, Mira JP, Schwebel C, Chimot L, Guiot P, Nay MA, Meziani F, Helms J, Roger C, Louart B, Trusson R, Dargent A, Binquet C, Quenot JP, Investigators I-IT, the CTN (2018) Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med 379(15):1431–1442

    Article  CAS  PubMed  Google Scholar 

  6. Investigators T-AKI, Bagshaw SM, Wald R, Adhikari NKJ, Bellomo R, da Costa BR, Dreyfuss D, Du B, Gallagher MP, Gaudry S, Hoste EA, Lamontagne F, Joannidis M, Landoni G, Liu KD, McAuley DF, McGuinness SP, Neyra JA, Nichol AD, Ostermann M, Palevsky PM, Pettila V, Quenot JP, Qiu H, Rochwerg B, Schneider AG, Smith OM, Thome F, Thorpe KE, Vaara S, Weir M, Wang AY, Young P, Zarbock A (2020) Timing of initiation of renal-replacement therapy in acute kidney injury. N Engl J Med 383(3):240–251

    Article  Google Scholar 

  7. Gaudry S, Hajage D, Martin-Lefevre L, Lebbah S, Louis G, Moschietto S, Titeca-Beauport D, Combe B, Pons B, de Prost N, Besset S, Combes A, Robine A, Beuzelin M, Badie J, Chevrel G, Bohe J, Coupez E, Chudeau N, Barbar S, Vinsonneau C, Forel JM, Thevenin D, Boulet E, Lakhal K, Aissaoui N, Grange S, Leone M, Lacave G, Nseir S, Poirson F, Mayaux J, Asehnoune K, Geri G, Klouche K, Thiery G, Argaud L, Rozec B, Cadoz C, Andreu P, Reignier J, Ricard JD, Quenot JP, Dreyfuss D (2021) Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial. Lancet 397(10281):1293–1300

    Article  CAS  PubMed  Google Scholar 

  8. Klein SJ, Brandtner AK, Lehner GF, Ulmer H, Bagshaw SM, Wiedermann CJ, Joannidis M (2018) Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 44(3):323–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoste E, Bihorac A, Al-Khafaji A, Ortega LM, Ostermann M, Haase M, Zacharowski K, Wunderink R, Heung M, Lissauer M, Self WH, Koyner JL, Honore PM, Prowle JR, Joannidis M, Forni LG, Kampf JP, McPherson P, Kellum JA, Chawla LS (2020) Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med 46(5):943–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bagshaw SM, Al-Khafaji A, Artigas A, Davison D, Haase M, Lissauer M, Zacharowski K, Chawla LS, Kwan T, Kampf JP, McPherson P, Kellum JA (2021) External validation of urinary C-C motif chemokine ligand 14 (CCL14) for prediction of persistent acute kidney injury. Crit Care 25(1):185

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen JJ, Chang CH, Huang YT, Kuo G (2020) Furosemide stress test as a predictive marker of acute kidney injury progression or renal replacement therapy: a systemic review and meta-analysis. Crit Care 24(1):202

    Article  PubMed  PubMed Central  Google Scholar 

  12. Edrees F, Li T, Vijayan A (2016) Prolonged intermittent renal replacement therapy. Adv Chronic Kidney Dis 23(3):195–202

    Article  PubMed  Google Scholar 

  13. Phu NH, Hien TT, Mai NT, Chau TT, Chuong LV, Loc PP, Winearls C, Farrar J, White N, Day N (2002) Hemofiltration and peritoneal dialysis in infection-associated acute renal failure in Vietnam. N Engl J Med 347(12):895–902

    Article  PubMed  Google Scholar 

  14. Fisher R, Clarke J, Al-Arfi K, Saha R, Lioudaki E, Mehta R, Pahl C, Sharpe C, Bramham K, Hutchings S (2021) Provision of acute renal replacement therapy, using three separate modalities, in critically ill patients during the COVID-19 pandemic. An after action review from a UK tertiary critical care centre. J Crit Care 62:190–196

    Article  CAS  PubMed  Google Scholar 

  15. Zhou X, Dong P, Pan J, Wang H, Xu Z, Chen B (2021) Renal replacement therapy modality in critically ill patients with acute kidney injury—a network meta-analysis of randomized controlled trials. J Crit Care 64:82–90

    Article  CAS  PubMed  Google Scholar 

  16. Panaput T, Peerapornratana S, Sirivongrangson P, Kulvichit W, Lumlertgul N, Jonny J, Praditpornsilpa K, Tungsanga K, Eiam-Ong S, Srisawat N (2021) Modalities of renal replacement therapy and clinical outcomes of patients with acute kidney injury in a resource-limited setting: results from a SEA-AKI study. J Crit Care 65:18–25

    Article  CAS  PubMed  Google Scholar 

  17. Matsuura R, Doi K, Hamasaki Y, Nangaku M (2020) RRT selection for AKI patients with critical illness. Semin Nephrol 40(5):498–505

  18. Truche AS, Darmon M, Bailly S, Clec’h C, Dupuis C, Misset B, Azoulay E, Schwebel C, Bouadma L, Kallel H, Adrie C, Dumenil AS, Argaud L, Marcotte G, Jamali S, Zaoui P, Laurent V, Goldgran-Toledano D, Sonneville R, Souweine B, Timsit JF, Group OS (2016) Continuous renal replacement therapy versus intermittent hemodialysis in intensive care patients: impact on mortality and renal recovery. Intensive Care Med 42(9):1408–1417

    Article  CAS  Google Scholar 

  19. Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, Cass A, Gallagher M (2013) Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 39(6):987–997

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Yang J, Eastwood GM, Zhu G, Tanaka A, Bellomo R (2015) Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury: a meta-analysis. Am J Kidney Dis 66(2):322–330

    Article  PubMed  Google Scholar 

  21. Liang KV, Sileanu FE, Clermont G, Murugan R, Pike F, Palevsky PM, Kellum JA (2016) Modality of RRT and recovery of kidney function after AKI in patients surviving to hospital discharge. Clin J Am Soc Nephrol 11(1):30–38

    Article  CAS  PubMed  Google Scholar 

  22. Gaudry S, Palevsky PM, Dreyfuss D (2022) Extracorporeal kidney-replacement therapy for acute kidney injury. N Engl J Med 386(10):964–975

    Article  CAS  PubMed  Google Scholar 

  23. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294(7):813–818

    Article  CAS  PubMed  Google Scholar 

  24. Ostermann M, Bellomo R, Burdmann EA, Doi K, Endre ZH, Goldstein SL, Kane-Gill SL, Liu KD, Prowle JR, Shaw AD, Srisawat N, Cheung M, Jadoul M, Winkelmayer WC, Kellum JA, Conference P (2020) Controversies in acute kidney injury: conclusions from a Kidney Disease: improving Global Outcomes (KDIGO) Conference. Kidney Int 98(2):294–309

  25. Beaubien-Souligny W, Yang Y, Burns KEA, Friedrich JO, Meraz-Munoz A, Clark EG, Adhikari NK, Bagshaw SM, Wald R (2021) Intra-dialytic hypotension following the transition from continuous to intermittent renal replacement therapy. Ann Intensive Care 11(1):96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Douvris A, Zeid K, Hiremath S, Bagshaw SM, Wald R, Beaubien-Souligny W, Kong J, Ronco C, Clark EG (2019) Mechanisms for hemodynamic instability related to renal replacement therapy: a narrative review. Intensive Care Med 45(10):1333–1346

    Article  PubMed  PubMed Central  Google Scholar 

  27. Silversides JA, Pinto R, Kuint R, Wald R, Hladunewich MA, Lapinsky SE, Adhikari NK (2014) Fluid balance, intradialytic hypotension, and outcomes in critically ill patients undergoing renal replacement therapy: a cohort study. Crit Care 18(6):624

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mahmoud H, Forni LG, McIntyre CW, Selby NM (2017) Myocardial stunning occurs during intermittent haemodialysis for acute kidney injury. Intensive Care Med 43(6):942–944

    Article  PubMed  PubMed Central  Google Scholar 

  29. Slessarev M, Salerno F, Ball IM, McIntyre CW (2019) Continuous renal replacement therapy is associated with acute cardiac stunning in critically ill patients. Hemodial Int

  30. Douvris A, Malhi G, Hiremath S, McIntyre L, Silver SA, Bagshaw SM, Wald R, Ronco C, Sikora L, Weber C, Clark EG (2018) Interventions to prevent hemodynamic instability during renal replacement therapy in critically ill patients: a systematic review. Crit Care 22(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  31. Macedo E, Karl B, Lee E, Mehta RL (2021) A randomized trial of albumin infusion to prevent intradialytic hypotension in hospitalized hypoalbuminemic patients. Crit Care 25(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  32. Clark EG, McIntyre L, Watpool I, Kong JWY, Ramsay T, Sabri E, Canney M, Hundemer GL, Brown PA, Sood MM, Hiremath S (2021) Intravenous albumin for the prevention of hemodynamic instability during sustained low-efficiency dialysis: a randomized controlled feasibility trial (The SAFER-SLED Study). Ann Intensive Care 11(1):174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonavia A, Miller L, Kellum JA, Singbartl K (2017) Hemoadsorption corrects hyperresistinemia and restores anti-bacterial neutrophil function. Intensive Care Med Exp 5(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cole L, Bellomo R, Journois D, Davenport P, Baldwin I, Tipping P (2001) High-volume haemofiltration in human septic shock. Intensive Care Med 27(6):978–986

    Article  CAS  PubMed  Google Scholar 

  35. Chung KK, Coates EC, Smith DJ Jr, Karlnoski RA, Hickerson WL, Arnold-Ross AL, Mosier MJ, Halerz M, Sprague AM, Mullins RF, Caruso DM, Albrecht M, Arnoldo BD, Burris AM, Taylor SL, Wolf SE (2017) High-volume hemofiltration in adult burn patients with septic shock and acute kidney injury: a multicenter randomized controlled trial. Crit Care 21(1):289

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wald R, Friedrich JO, Bagshaw SM, Burns KE, Garg AX, Hladunewich MA, House AA, Lapinsky S, Klein D, Pannu NI, Pope K, Richardson RM, Thorpe K, Adhikari NK (2012) Optimal Mode of clearance in critically ill patients with Acute Kidney Injury (OMAKI)—a pilot randomized controlled trial of hemofiltration versus hemodialysis: a Canadian Critical Care Trials Group project. Crit Care 16(5):R205

    Article  PubMed  PubMed Central  Google Scholar 

  37. Clark E, Molnar AO, Joannes-Boyau O, Honoré PM, Sikora L, Bagshaw SM (2014) High-volume hemofiltration for septic acute kidney injury: a systematic review and meta-analysis. Crit Care 18(1):R7

    Article  PubMed  PubMed Central  Google Scholar 

  38. Borthwick EM, Hill CJ, Rabindranath KS, Maxwell AP, McAuley DF, Blackwood B (2017) High-volume haemofiltration for sepsis in adults. Cochrane Database Syst Rev 1(1):Cd008075

  39. Côté JM, Pinard L, Cailhier JF, Lévesque R, Murray PT, Beaubien-Souligny W (2022) Intermittent convective therapies in patients with acute kidney injury: a systematic review with meta-analysis. Blood Purif 51(1):75–86

    Article  PubMed  Google Scholar 

  40. Broman ME, Hansson F, Vincent JL, Bodelsson M (2019) Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: a randomized crossover double-blind study. PLoS ONE 14(8):e0220444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Malard B, Lambert C, Kellum JA (2018) In vitro comparison of the adsorption of inflammatory mediators by blood purification devices. Intensive Care Med Exp 6(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  42. Garbero E, Livigni S, Ferrari F, Finazzi S, Langer M, Malacarne P, Meca MCC, Mosca S, Olivieri C, Pozzato M, Rossi C, Tavola M, Terzitta M, Viaggi B, Bertolini G (2021) High dose coupled plasma filtration and adsorption in septic shock patients. Results of the COMPACT-2: a multicentre, adaptive, randomised clinical trial. Intensive Care Med 47(11):1303–1311

  43. Putzu A, Schorer R, Lopez-Delgado JC, Cassina T, Landoni G (2019) Blood purification and mortality in sepsis and septic shock: a systematic review and meta-analysis of randomized trials. Anesthesiology 131(3):580–593

    Article  PubMed  Google Scholar 

  44. Nih Acute Renal Failure Trial Network VA, Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, Finkel K, Kellum JA, Paganini E, Schein RM, Smith MW, Swanson KM, Thompson BT, Vijayan A, Watnick S, Star RA, Peduzzi P (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359(1):7–20

    Article  Google Scholar 

  45. RENAL Study Investigators, Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, McArthur C, McGuinness S, Myburgh J, Norton R, Scheinkestel C, Su S (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361(17):1627–1638

    Article  Google Scholar 

  46. Rosner MH, Connor MJ Jr (2018) Management of severe hyponatremia with continuous renal replacement therapies. Clin J Am Soc Nephrol 13(5):787–789

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ostermann M, Dickie H, Tovey L, Treacher D (2010) Management of sodium disorders during continuous haemofiltration. Crit Care 14(3):418

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yessayan L, Yee J, Frinak S, Szamosfalvi B (2014) Treatment of severe hyponatremia in patients with kidney failure: role of continuous venovenous hemofiltration with low-sodium replacement fluid. Am J Kidney Dis 64(2):305–310

    Article  CAS  PubMed  Google Scholar 

  49. Neyra JA, Ortiz-Soriano VM, Ali D, Morris PE, Johnston CM (2019) A multidisciplinary approach for the management of severe hyponatremia in patients requiring continuous renal replacement therapy. Kidney Int Rep 4(1):59–66

    Article  PubMed  Google Scholar 

  50. Demirjian S, Teo BW, Guzman JA, Heyka RJ, Paganini EP, Fissell WH, Schold JD, Schreiber MJ (2011) Hypophosphatemia during continuous hemodialysis is associated with prolonged respiratory failure in patients with acute kidney injury. Nephrol Dial Transpl 26(11):3508–3514

    Article  CAS  Google Scholar 

  51. Thompson Bastin ML, Adams PM, Nerusu S, Morris PE, Mayer KP, Neyra JA (2022) Association of phosphate containing solutions with incident hypophosphatemia in critically ill patients requiring continuous renal replacement therapy. Blood Purif 51(2):122–129

    Article  CAS  PubMed  Google Scholar 

  52. Thompson Bastin ML, Stromberg AJ, Nerusu SN, Liu LJ, Mayer KP, Liu KD, Bagshaw SM, Wald R, Morris PE, Neyra JA (2022) Association of phosphate-containing versus phosphate-free solutions on ventilator days in patients requiring continuous kidney replacement therapy. Clin J Am Soc Nephrol

  53. Coutrot M, Hekimian G, Moulin T, Brechot N, Schmidt M, Besset S, Nieszkowska A, Franchineau G, Bourcier S, Bourron O, Luyt CE, Combes A (2018) Euglycemic ketoacidosis, a common and underecognized complication of continuous renal replacement therapy using glucose-free solutions. Intensive Care Med 44(7):1185–1186

    Article  PubMed  Google Scholar 

  54. Ting S, Chua HR, Cove ME (2021) Euglycemic ketosis during continuous kidney replacement therapy with glucose-free solution: a report of 8 cases. Am J Kidney Dis 78(2):305–308

    Article  CAS  PubMed  Google Scholar 

  55. Stevens JS, Salazar-Schicchi J, Radhakrishnan J, Mohan S (2021) The case|euglycemic ketoacidosis in a patient on continuous renal replacement therapy. Kidney Int 99(6):1507–1508

    Article  PubMed  Google Scholar 

  56. Tolwani AJ, Prendergast MB, Speer RR, Stofan BS, Wille KM (2006) A practical citrate anticoagulation continuous venovenous hemodiafiltration protocol for metabolic control and high solute clearance. Clin J Am Soc Nephrol 1(1):79–87

    Article  CAS  PubMed  Google Scholar 

  57. Tsujimoto H, Tsujimoto Y, Nakata Y, Fujii T, Takahashi S, Akazawa M, Kataoka Y (2020) Pharmacological interventions for preventing clotting of extracorporeal circuits during continuous renal replacement therapy. Cochrane Database Syst Rev 12:CD012467

  58. Zarbock A, Kullmar M, Kindgen-Milles D, Wempe C, Gerss J, Brandenburger T, Dimski T, Tyczynski B, Jahn M, Mulling N, Mehrlander M, Rosenberger P, Marx G, Simon TP, Jaschinski U, Deetjen P, Putensen C, Schewe JC, Kluge S, Jarczak D, Slowinski T, Bodenstein M, Meybohm P, Wirtz S, Moerer O, Kortgen A, Simon P, Bagshaw SM, Kellum JA, Meersch M, Investigators R, the Sepnet Trial G, (2020) Effect of regional citrate anticoagulation vs systemic heparin anticoagulation during continuous kidney replacement therapy on dialysis filter life span and mortality among critically ill patients with acute kidney injury: a randomized clinical trial. JAMA 324(16):1629–1639

    Article  CAS  PubMed  Google Scholar 

  59. Slowinski T, Morgera S, Joannidis M, Henneberg T, Stocker R, Helset E, Andersson K, Wehner M, Kozik-Jaromin J, Brett S, Hasslacher J, Stover JF, Peters H, Neumayer HH, Kindgen-Milles D (2015) Safety and efficacy of regional citrate anticoagulation in continuous venovenous hemodialysis in the presence of liver failure: the Liver Citrate Anticoagulation Threshold (L-CAT) observational study. Crit Care 19:349

    Article  PubMed  PubMed Central  Google Scholar 

  60. Klingele M, Stadler T, Fliser D, Speer T, Groesdonk HV, Raddatz A (2017) Long-term continuous renal replacement therapy and anticoagulation with citrate in critically ill patients with severe liver dysfunction. Crit Care 21(1):294

    Article  PubMed  PubMed Central  Google Scholar 

  61. Malbrain M, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, Teboul JL, Rice TW, Mythen M, Monnet X (2018) Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care 8(1):66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Messmer AS, Zingg C, Müller M, Gerber JL, Schefold JC, Pfortmueller CA (2020) Fluid overload and mortality in adult critical care patients—a systematic review and meta-analysis of observational studies. Crit Care Med 48(12):1862–1870

    Article  PubMed  Google Scholar 

  63. Woodward CW, Lambert J, Ortiz-Soriano V, Li Y, Ruiz-Conejo M, Bissell BD, Kelly A, Adams P, Yessayan L, Morris PE, Neyra JA (2019) Fluid overload associates with major adverse kidney events in critically ill patients with acute kidney injury requiring continuous renal replacement therapy. Crit Care Med 47(9):e753–e760

    Article  PubMed  Google Scholar 

  64. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, Lo S, McArthur C, McGuiness S, Norton R, Myburgh J, Scheinkestel C, Su S (2012) An observational study fluid balance and patient outcomes in the Randomized Evaluation of Normal vs. Augmented Level of Replacement Therapy trial. Crit Care Med 40(6):1753–1760

  65. Murugan R, Kerti SJ, Chang CH, Gallagher M, Clermont G, Palevsky PM, Kellum JA, Bellomo R (2019) Association of net ultrafiltration rate with mortality among critically ill adults with acute kidney injury receiving continuous venovenous hemodiafiltration: a secondary analysis of the randomized evaluation of normal vs augmented level (RENAL) of renal replacement therapy trial. JAMA Netw Open 2(6):e195418

    Article  PubMed  PubMed Central  Google Scholar 

  66. Katulka RJ, Al Saadon A, Sebastianski M, Featherstone R, Vandermeer B, Silver SA, Gibney RTN, Bagshaw SM, Rewa OG (2020) Determining the optimal time for liberation from renal replacement therapy in critically ill patients: a systematic review and meta-analysis (DOnE RRT). Crit Care 24(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  67. Baeg SI, Jeon J, Yoo H, Na SJ, Kim K, Chung CR, Yang JH, Jeon K, Lee JE, Huh W, Suh GY, Kim YG, Kim DJ, Jang HR (2021) A scoring model with simple clinical parameters to predict successful discontinuation of continuous renal replacement therapy. Blood Purif 50(6):779–789

    Article  CAS  PubMed  Google Scholar 

  68. Liu C, Peng Z, Dong Y, Li Z, Andrijasevic NM, Albright RC Jr, Kashani KB (2021) Predicting successful continuous renal replacement therapy liberation in critically ill patients with acute kidney injury. J Crit Care 66:6–13

    Article  PubMed  Google Scholar 

  69. Chanchlani R, Nash DM, McArthur E, Zappitelli M, Archer V, Kuwornu JP, Garg AX, Greenberg JH, Goldstein SL, Thabane L, Wald R (2019) Secular trends in incidence, modality and mortality with dialysis receiving AKI in children in Ontario: a population-based cohort study. Clin J Am Soc Nephrol 14(9):1288–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Robinson CH, Jeyakumar N, Luo B, Wald R, Garg AX, Nash DM, McArthur E, Greenberg JH, Askenazi D, Mammen C, Thabane L, Goldstein S, Parekh RS, Zappitelli M, Chanchlani R (2021) Long-term kidney outcomes following dialysis-treated childhood acute kidney injury: a population-based cohort study. J Am Soc Nephrol 32(8):2005–2019

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG (2012) Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 59(4):523–530

    Article  PubMed  Google Scholar 

  72. Hessey E, Morissette G, Lacroix J, Perreault S, Samuel S, Dorais M, Phan V, Jouvet P, Lafrance JP, LeLorier J, Palijan A, Pizzi M, Roy L, Zappitelli M (2018) Healthcare utilization after acute kidney injury in the pediatric intensive care unit. Clin J Am Soc Nephrol 13(5):685–692

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL (2017) Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376(1):11–20

    Article  PubMed  Google Scholar 

  74. Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, Kim RW, Parikh CR (2011) Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med 39(6):1493–1499

    Article  PubMed  PubMed Central  Google Scholar 

  75. Morgan CJ, Zappitelli M, Robertson CM, Alton GY, Sauve RS, Joffe AR, Ross DB, Rebeyka IM (2013) Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J Pediatr 162(1):120-127.e121

    Article  PubMed  Google Scholar 

  76. Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, Chishti AS, Woroniecki R, Mammen C, Swanson JR, Sridhar S, Wong CS, Kupferman JC, Griffin RL, Askenazi DJ (2017) Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health 1(3):184–194

    Article  PubMed  PubMed Central  Google Scholar 

  77. Starr MC, Charlton JR, Guillet R, Reidy K, Tipple TE, Jetton JG, Kent AL, Abitbol CL, Ambalavanan N, Mhanna MJ, Askenazi DJ, Selewski DT, Harer MW (2021) Advances in neonatal acute kidney injury. Pediatrics 148(5)

  78. Askenazi D, Ingram D, White S, Cramer M, Borasino S, Coghill C, Dill L, Tenney F, Feig D, Fathallah-Shaykh S (2016) Smaller circuits for smaller patients: improving renal support therapy with Aquadex™. Pediatr Nephrol 31(5):853–860

    Article  PubMed  Google Scholar 

  79. Reznik VM, Randolph G, Collins CM, Peterson BM, Lemire JM, Mendoza SA (1993) Cost analysis of dialysis modalities for pediatric acute renal failure. Perit Dial Int 13(4):311–313

    Article  CAS  PubMed  Google Scholar 

  80. Flynn JT (2002) Choice of dialysis modality for management of pediatric acute renal failure. Pediatr Nephrol 17(1):61–69

    Article  CAS  PubMed  Google Scholar 

  81. Burgmaier K, Hackl A, Ehren R, Kribs A, Burgmaier M, Weber LT, Oberthuer A, Habbig S (2020) Peritoneal dialysis in extremely and very low-birth-weight infants. Perit Dial Int 40(2):233–236

    Article  PubMed  Google Scholar 

  82. Stojanović VD, Bukarica SS, Antić JB, Doronjski AD (2017) Peritoneal dialysis in very low birth weight neonates. Perit Dial Int 37(4):389–396

    Article  PubMed  Google Scholar 

  83. Barhight MF, Soranno D, Faubel S, Gist KM (2018) Fluid management with peritoneal dialysis after pediatric cardiac surgery. World J Pediatr Congenit Heart Surg 9(6):696–704

    Article  PubMed  Google Scholar 

  84. Guzzo I, de Galasso L, Mir S, Bulut IK, Jankauskiene A, Burokiene V, Cvetkovic M, Kostic M, Bayazit AK, Yildizdas D, Schmitt CP, Paglialonga F, Montini G, Yilmaz E, Oh J, Weber L, Taylan C, Hayes W, Shroff R, Vidal E, Murer L, Mencarelli F, Pasini A, Teixeira A, Afonso AC, Drozdz D, Schaefer F, Picca S (2019) Acute dialysis in children: results of a European survey. J Nephrol 32(3):445–451

    Article  PubMed  Google Scholar 

  85. Nourse P, Cullis B, Finkelstein F, Numanoglu A, Warady B, Antwi S, McCulloch M (2021) ISPD guidelines for peritoneal dialysis in acute kidney injury: 2020 Update (paediatrics). Perit Dial Int 41(2):139–157

    Article  PubMed  Google Scholar 

  86. Ansari N (2011) Peritoneal dialysis in renal replacement therapy for patients with acute kidney injury. Int J Nephrol 2011:739794

    Article  PubMed  PubMed Central  Google Scholar 

  87. Vasudevan A, Phadke K, Yap HK (2017) Peritoneal dialysis for the management of pediatric patients with acute kidney injury. Pediatr Nephrol 32(7):1145–1156

    Article  PubMed  Google Scholar 

  88. Agrawal A, Nolph KD (2000) Advantages of tidal peritoneal dialysis. Perit Dial Int 20(Suppl 2):S98-100

    Article  PubMed  Google Scholar 

  89. Gabriel DP, Nascimento GV, Caramori JT, Martim LC, Barretti P, Balbi AL (2007) High volume peritoneal dialysis for acute renal failure. Perit Dial Int 27(3):277–282

    Article  CAS  PubMed  Google Scholar 

  90. Raaijmakers R, Schröder CH, Gajjar P, Argent A, Nourse P (2011) Continuous flow peritoneal dialysis: first experience in children with acute renal failure. Clin J Am Soc Nephrol 6(2):311–318

    Article  PubMed  PubMed Central  Google Scholar 

  91. HK Yap LR. Peritoneal dialysis in critically ill children. . In: Goldstein ADaSL, ed. Critical care nephrology and renal replacement therapy in children. Springer; 2018.

  92. Raina R, McCulloch M, Nourse P, Sethi SK, Yap HK (2021) Advances in kidney replacement therapy in infants. Adv Chronic Kidney Dis 28(1):91–104

    Article  PubMed  Google Scholar 

  93. Munshi R, Lee-Son K, Hackbarth RM, Quigley R, Sutherland SM, Echeverri J, Goldstein SL (2020) Clinical evaluation of the Prismaflex™ HF 20 set and Prismaflex™ system 7.10 for acute continuous kidney replacement therapy (CKRT) in children. Pediatr Nephrol 35(12):2345–2352

  94. Liu ID, Ng KH, Lau PY, Yeo WS, Koh PL, Yap HK (2013) Use of HF20 membrane in critically ill unstable low-body-weight infants on inotropic support. Pediatr Nephrol 28(5):819–822

    Article  PubMed  Google Scholar 

  95. Santiago MJ, López-Herce J (2011) Prismaflex HF20 for continuous renal replacement therapy in critically ill children. Artif Organs 35(12):1194

    Article  PubMed  Google Scholar 

  96. Vidal E, Garzotto F, Parolin M, Manenti C, Zanin A, Bellettato M, Remuzzi G, Goldstein SL, Murer L, Ronco C (2017) Therapeutic plasma exchange in neonates and infants: successful use of a miniaturized machine. Blood Purif 44(2):100–105

    Article  PubMed  Google Scholar 

  97. Garzotto F, Vidal E, Ricci Z, Paglialonga F, Giordano M, Laforgia N, Peruzzi L, Bellettato M, Murer L, Ronco C (2020) Continuous kidney replacement therapy in critically ill neonates and infants: a retrospective analysis of clinical results with a dedicated device. Pediatr Nephrol 35(9):1699–1705

    Article  PubMed  Google Scholar 

  98. Goldstein SL, Vidal E, Ricci Z, Paglialonga F, Peruzzi L, Giordano M, Laforgia N, Ronco C (2022) Survival of infants treated with CKRT: comparing adapted adult platforms with the Carpediem™. Pediatr Nephrol 37(3):667–675

    Article  PubMed  Google Scholar 

  99. Menon S, Broderick J, Munshi R, Dill L, DePaoli B, Fathallah-Shaykh S, Claes D, Goldstein SL, Askenazi DJ (2019) Kidney support in children using an ultrafiltration device: a multicenter, retrospective study. Clin J Am Soc Nephrol 14(10):1432–1440

    Article  PubMed  PubMed Central  Google Scholar 

  100. Coulthard MG, Crosier J, Griffiths C, Smith J, Drinnan M, Whitaker M, Beckwith R, Matthews JN, Flecknell P, Lambert HJ (2014) Haemodialysing babies weighing <8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): comparison with peritoneal and conventional haemodialysis. Pediatr Nephrol 29(10):1873–1881

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SMB is supported by a Canada Research Chair in Critical Care Outcomes and Systems Evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Wald.

Ethics declarations

Conflicts of interest

RW has received unrestricted research support and speaker fees from Baxter and consulting fees from Lilly. JAN has received consulting fees from Baxter. SAS has received speaking fees from Baxter. SMB has received unrestricted research support and fees for speaking and scientific advisory from Baxter, fees for scientific advisory from Novartis, fees for data safety monitoring for I-SPY-COVID, and fees for scientific advisory and clinical adjudication from BioPorto. MO has received speaker honoraria and research funding from Baxter, Fresenius Medical and Biomerieux. AZ has received unrestricted research support and speaker fees from Baxter, Fresenius, and BioMerieux.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wald, R., Beaubien-Souligny, W., Chanchlani, R. et al. Delivering optimal renal replacement therapy to critically ill patients with acute kidney injury. Intensive Care Med 48, 1368–1381 (2022). https://doi.org/10.1007/s00134-022-06851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-022-06851-6

Keywords

Navigation