Skip to main content
Log in

Improved peroxidase-mimic property: Sustainable, high-efficiency interfacial catalysis with H2O2 on the surface of vesicles of hexavanadate-organic hybrid surfactants

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

An emerging method for effectively improving the catalytic activity of metal oxide hybrids involves the creation of metal oxide interfaces for facilitating the activation of reagents. Here, we demonstrate that bilayer vesicles formed from a hexavanadate cluster functionalized with two alkyl chains are highly efficient catalysts for the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) with H2O2 at room temperature, a widely used model reaction mimicking the activity of peroxidase in biological catalytic oxidation processes. Driven by hydrophobic interactions, the double-tailed hexavanadate-headed amphiphiles can self-assemble into bilayer vesicles and create hydrophobic domains that segregate the TMB chromogenic substrate. The reaction of TMB with H2O2 takes place at the interface of the hydrophilic and hydrophobic domains, where the reagents also make contact with the catalytic hexavanadate clusters, and it is approximately two times more efficient compared with the reactions carried out with the corresponding unassembled systems. Moreover, the assembled vesicular system possesses affinity for TMB comparable to that of reported noble metal mimic nanomaterials, as well as a higher maximum reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marguet, M.; Bonduelle, C.; Lecommandoux, S. Multicompartmentalized polymeric systems: Towards biomimetic cellular structure and function. Chem. Soc. Rev. 2013, 42, 512–529.

    Article  Google Scholar 

  2. Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Polymeric vesicles: From drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res. 2011, 44, 1039–1049.

    Article  Google Scholar 

  3. Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.

    Article  Google Scholar 

  4. Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 2016, 11, 409–420.

    Article  Google Scholar 

  5. Palivan, C. G.; Goers, R.; Najer, A.; Zhang, X. Y.; Car, A.; Meier, W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem. Soc. Rev. 2016, 45, 377–411.

    Article  Google Scholar 

  6. Peters, R. J. R. W.; Marguet, M.; Marais, S.; Fraaije, M. W.; van Hest, J. C. M.; Lecommandoux, S. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem., Int. Ed. 2014, 53, 146–150.

    Article  Google Scholar 

  7. Bolinger, P. Y.; Stamou, D.; Vogel, H. An integrated selfassembled nanofluidic system for controlled biological chemistries. Angew. Chem., Int. Ed. 2008, 47, 5544–5549.

    Article  Google Scholar 

  8. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    Article  Google Scholar 

  9. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  Google Scholar 

  10. Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

    Article  Google Scholar 

  11. Gao, N.; Dong, K.; Zhao, A. D.; Sun, H. J.; Wang, Y.; Ren, J. S.; Qu, X. G. Polyoxometalate-based nanozyme: Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease. Nano Res. 2016, 9, 1079–1090.

    Article  Google Scholar 

  12. Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

    Article  Google Scholar 

  13. Cai, S. F.; Jia, X. H.; Han, Q. S.; Yan, X. Y.; Yang, R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069.

    Article  Google Scholar 

  14. Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L. Q. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004, 104, 849–902.

    Article  Google Scholar 

  15. Wang, J. J.; Mi, X. G.; Guan, H. Y.; Wang, X. H.; Wu, Y. Assembly of folate-polyoxometalate hybrid spheres for colorimetric immunoassay like oxidase. Chem. Commun. 2011, 47, 2940–2942.

    Article  Google Scholar 

  16. Proust, A.; Matt, B.; Villanneau, R.; Guillemot, G.; Gouzerh, P.; Izzet, G. Functionalization and post-functionalization: A step towards polyoxometalate-based materials. Chem. Soc. Rev. 2012, 41, 7605–7622.

    Article  Google Scholar 

  17. Han, X. B.; Zhang, Z. M.; Zhang, T.; Li, Y. G.; Lin, W. B.; You, W. S.; Su, Z. M.; Wang, E. B. Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation. J. Am. Chem. Soc. 2014, 136, 5359–5366.

    Article  Google Scholar 

  18. Lv, H. J.; Geletii, Y. V.; Zhao, C. C.; Vickers, J. W.; Zhu, G. B.; Luo, Z.; Song, J.; Lian, T. Q.; Musaev, D. G.; Hill, C. L. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 2012, 41, 7572–7589.

    Article  Google Scholar 

  19. Garai, S.; Bögge, H.; Merca, A.; Petina, O. A.; Grego, A.; Gouzerh, P.; Haupt, E. T. K.; Weinstock, I. A.; Müller, A. Densely packed hydrophobic clustering: Encapsulated valerates form a high-temperature-stable {Mo132} capsule system. Angew. Chem., Int. Ed. 2016, 55, 6634–6637.

    Article  Google Scholar 

  20. Bayaguud, A.; Chen, K.; Wei, Y. G. Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Res. 2016, 9, 3858–3867.

    Article  Google Scholar 

  21. Busche, C.; Vilà-Nadal, L.; Yan, J.; Miras, H. N.; Long, D. L.; Georgiev, V. P.; Asenov, A.; Pedersen, R. H.; Gadegaard, N.; Mirza, M. M. et al. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters. Nature 2014, 515, 545–549.

    Article  Google Scholar 

  22. Yin, P. C.; Wu, B.; Li, T.; Bonnesen, P. V.; Hong, K. L.; Seifert, S.; Porcar, L.; Do, C.; Keum, J. K. Reduction-triggered self-assembly of nanoscale molybdenum oxide molecular clusters. J. Am. Chem. Soc. 2016, 138, 10623–10629.

    Article  Google Scholar 

  23. Wang, Z.; Daemen, L. L.; Cheng, Y.; Mamontov, E.; Bonnesen, P. V.; Hong, K.; Ramirez-Cuesta, A. J.; Yin, P. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior. Chem.—Eur. J. 2016, 22, 14131–14136.

    Google Scholar 

  24. Kopilevich, S.; Gottlieb, H.; Keinan-Adamsky, K.; Müller, A.; Weinstock, I. A. The uptake and assembly of alkanes within a porous nanocapsule in water: New information about hydrophobic confinement. Angew. Chem., Int. Ed. 2016, 55, 4476–4481.

    Article  Google Scholar 

  25. Zhang, J.; Song, Y. F.; Cronin, L.; Liu, T. B. Self-assembly of organic-inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups. J. Am. Chem. Soc. 2008, 130, 14408–14409.

    Article  Google Scholar 

  26. Yin, P. C.; Wu, P. F.; Xiao, Z. C.; Li, D.; Bitterlich, E.; Zhang, J.; Cheng, P.; Vezenov, D. V.; Liu, T. B.; Wei, Y. G. A double-tailed fluorescent surfactant with a hexavanadate cluster as the head group. Angew. Chem., Int. Ed. 2011, 50, 2521–2525.

    Article  Google Scholar 

  27. Wu, P. F.; Xiao, Z. C.; Zhang, J.; Hao, J.; Chen, J. K.; Yin, P. C.; Wei, Y. G. DMAP-catalyzed esterification of pentaerythritol-derivatized POMs: A new route for the functionalization of polyoxometalates. Chem. Commun. 2011, 47, 5557–5559.

    Article  Google Scholar 

  28. Yin, P. C.; Li, D.; Liu, T. B. Solution behaviors and selfassembly of polyoxometalates as models of macroions and amphiphilic polyoxometalate-organic hybrids as novel surfactants. Chem. Soc. Rev. 2012, 41, 7368–7383.

    Article  Google Scholar 

  29. Liu, T. B.; Diemann, E.; Li, H. L.; Dress, A. W. M.; Müller, A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 2003, 426, 59–62.

    Article  Google Scholar 

  30. Liu, T. B.; Langston, M. L. K.; Li, D.; Pigga, J. M.; Pichon, C.; Todea, A. M.; Müller, A. Self-recognition among different polyprotic macroions during assembly processes in dilute solution. Science 2011, 331, 1590–1592.

    Article  Google Scholar 

  31. Wang, Z. J.; Clary, K. N.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 2013, 5, 100–103.

    Article  Google Scholar 

  32. Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: Artificial enzyme mimics. Chem. Soc. Rev. 2014, 43, 1734–1787.

    Google Scholar 

  33. Sun, X. L.; Guo, S. J.; Chung, C. S.; Zhu, W. L.; Sun, S. H. A sensitive H2O2 assay based on dumbbell-like PtPd-Fe3O4 nanoparticles. Adv. Mater. 2013, 25, 132–136.

    Article  Google Scholar 

  34. Cai, K.; Lv, Z. C.; Chen, K.; Huang, L.; Wang, J.; Shao, F.; Wang, Y. J.; Han, H. Y. Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity. Chem. Commun. 2013, 49, 6024–6026.

    Article  Google Scholar 

  35. Hu, Y. L.; Lee, C. C.; Ribbe, M. W. Extending the carbon chain: Hydrocarbon formation catalyzed by vanadium/ molybdenum nitrogenases. Science 2011, 333, 753–755.

    Article  Google Scholar 

  36. Liu, T. B. Hydrophilic macroionic solutions: What happens when soluble ions reach the size of nanometer scale? Langmuir 2010, 26, 9202–9213.

    Article  Google Scholar 

  37. Pigga, J. M.; Kistler, M. L.; Shew, C. Y.; Antonio, M. R.; Liu, T. B. Counterion distribution around hydrophilic molecular macroanions: The source of the attractive force in selfassembly. Angew. Chem., Int. Ed. 2009, 48, 6538–6542.

    Article  Google Scholar 

  38. Poyton, M. F.; Sendecki, A. M.; Cong, X.; Cremer, P. S. Cu2+ binds to phosphatidylethanolamine and increases oxidation in lipid membranes. J. Am. Chem. Soc. 2016, 138, 1584–1590.

    Article  Google Scholar 

  39. Stohs, S. J.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol. Med. 1995, 18, 321–336.

    Article  Google Scholar 

  40. Nogueira, R. F. P.; Oliveira, M. C.; Paterlini, W. C. Simple and fast spectrophotometric determination of H2O2 in photo- Fenton reactions using metavanadate. Talanta 2005, 66, 86–91.

    Article  Google Scholar 

  41. Lei, C. X.; Hu, S. Q.; Shen, G. L.; Yu, R. Q. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta 2003, 59, 981–988.

    Article  Google Scholar 

  42. Mizuno, N.; Kamata, K. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord. Chem. Rev. 2011, 255, 2358–2370.

    Article  Google Scholar 

  43. Sun, M.; Zhang, J. Z.; Putaj, P.; Caps, V.; Lefebvre, F.; Pelletier, J.; Basset, J. M. Catalytic oxidation of light alkanes (C1–C4) by heteropoly compounds. Chem. Rev. 2014, 114, 981–1019.

    Article  Google Scholar 

  44. Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financially support by the National Natural Science Foundation of China (Nos. 21631007, 21401050, 21471087 and 21271068), Beijing Natural Science Foundation (No. 2164063), China Postdoctoral Science Foundation (No. 2014M560948), the State Key Laboratory of Natural and Biomimetic Drugs (No. K20160202), the National Natural Science Foundation of Hubei Province (No. 2015CFA131) and Wuhan Applied Basic Research Program (No. 2014010101010020). T. B. L. acknowledges support from the National Science Foundation (No. CHE1607138) and the University of Akron.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingfan Wu, Tianbo Liu or Yongge Wei.

Electronic supplementary material

12274_2017_1746_MOESM1_ESM.pdf

Improved peroxidase-mimic property: Sustainable, high-efficiency interfacial catalysis with H2O2 on the surface of vesicles of hexavanadate-organic hybrid surfactants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Bayaguud, A., Li, H. et al. Improved peroxidase-mimic property: Sustainable, high-efficiency interfacial catalysis with H2O2 on the surface of vesicles of hexavanadate-organic hybrid surfactants. Nano Res. 11, 1313–1321 (2018). https://doi.org/10.1007/s12274-017-1746-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1746-5

Keywords

Navigation