Advertisement

Nano Research

, Volume 11, Issue 3, pp 1313–1321 | Cite as

Improved peroxidase-mimic property: Sustainable, high-efficiency interfacial catalysis with H2O2 on the surface of vesicles of hexavanadate-organic hybrid surfactants

  • Kun Chen
  • Aruuhan Bayaguud
  • Hui Li
  • Yang Chu
  • Haochen Zhang
  • Hongli Jia
  • Baofang Zhang
  • Zicheng Xiao
  • Pingfan WuEmail author
  • Tianbo LiuEmail author
  • Yongge WeiEmail author
Research Article

Abstract

An emerging method for effectively improving the catalytic activity of metal oxide hybrids involves the creation of metal oxide interfaces for facilitating the activation of reagents. Here, we demonstrate that bilayer vesicles formed from a hexavanadate cluster functionalized with two alkyl chains are highly efficient catalysts for the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) with H2O2 at room temperature, a widely used model reaction mimicking the activity of peroxidase in biological catalytic oxidation processes. Driven by hydrophobic interactions, the double-tailed hexavanadate-headed amphiphiles can self-assemble into bilayer vesicles and create hydrophobic domains that segregate the TMB chromogenic substrate. The reaction of TMB with H2O2 takes place at the interface of the hydrophilic and hydrophobic domains, where the reagents also make contact with the catalytic hexavanadate clusters, and it is approximately two times more efficient compared with the reactions carried out with the corresponding unassembled systems. Moreover, the assembled vesicular system possesses affinity for TMB comparable to that of reported noble metal mimic nanomaterials, as well as a higher maximum reaction rate.

Keywords

peroxidase-mimic activity hexavanadate-headed surfactants self-assembly interfacial catalysis artificial biosystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully acknowledge the financially support by the National Natural Science Foundation of China (Nos. 21631007, 21401050, 21471087 and 21271068), Beijing Natural Science Foundation (No. 2164063), China Postdoctoral Science Foundation (No. 2014M560948), the State Key Laboratory of Natural and Biomimetic Drugs (No. K20160202), the National Natural Science Foundation of Hubei Province (No. 2015CFA131) and Wuhan Applied Basic Research Program (No. 2014010101010020). T. B. L. acknowledges support from the National Science Foundation (No. CHE1607138) and the University of Akron.

Supplementary material

12274_2017_1746_MOESM1_ESM.pdf (1.7 mb)
Improved peroxidase-mimic property: Sustainable, high-efficiency interfacial catalysis with H2O2 on the surface of vesicles of hexavanadate-organic hybrid surfactants

References

  1. [1]
    Marguet, M.; Bonduelle, C.; Lecommandoux, S. Multicompartmentalized polymeric systems: Towards biomimetic cellular structure and function. Chem. Soc. Rev. 2013, 42, 512–529.CrossRefGoogle Scholar
  2. [2]
    Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Polymeric vesicles: From drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res. 2011, 44, 1039–1049.CrossRefGoogle Scholar
  3. [3]
    Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.CrossRefGoogle Scholar
  4. [4]
    Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 2016, 11, 409–420.CrossRefGoogle Scholar
  5. [5]
    Palivan, C. G.; Goers, R.; Najer, A.; Zhang, X. Y.; Car, A.; Meier, W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem. Soc. Rev. 2016, 45, 377–411.CrossRefGoogle Scholar
  6. [6]
    Peters, R. J. R. W.; Marguet, M.; Marais, S.; Fraaije, M. W.; van Hest, J. C. M.; Lecommandoux, S. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem., Int. Ed. 2014, 53, 146–150.CrossRefGoogle Scholar
  7. [7]
    Bolinger, P. Y.; Stamou, D.; Vogel, H. An integrated selfassembled nanofluidic system for controlled biological chemistries. Angew. Chem., Int. Ed. 2008, 47, 5544–5549.CrossRefGoogle Scholar
  8. [8]
    Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.CrossRefGoogle Scholar
  9. [9]
    Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.CrossRefGoogle Scholar
  10. [10]
    Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.CrossRefGoogle Scholar
  11. [11]
    Gao, N.; Dong, K.; Zhao, A. D.; Sun, H. J.; Wang, Y.; Ren, J. S.; Qu, X. G. Polyoxometalate-based nanozyme: Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease. Nano Res. 2016, 9, 1079–1090.CrossRefGoogle Scholar
  12. [12]
    Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.CrossRefGoogle Scholar
  13. [13]
    Cai, S. F.; Jia, X. H.; Han, Q. S.; Yan, X. Y.; Yang, R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069.CrossRefGoogle Scholar
  14. [14]
    Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L. Q. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004, 104, 849–902.CrossRefGoogle Scholar
  15. [15]
    Wang, J. J.; Mi, X. G.; Guan, H. Y.; Wang, X. H.; Wu, Y. Assembly of folate-polyoxometalate hybrid spheres for colorimetric immunoassay like oxidase. Chem. Commun. 2011, 47, 2940–2942.CrossRefGoogle Scholar
  16. [16]
    Proust, A.; Matt, B.; Villanneau, R.; Guillemot, G.; Gouzerh, P.; Izzet, G. Functionalization and post-functionalization: A step towards polyoxometalate-based materials. Chem. Soc. Rev. 2012, 41, 7605–7622.CrossRefGoogle Scholar
  17. [17]
    Han, X. B.; Zhang, Z. M.; Zhang, T.; Li, Y. G.; Lin, W. B.; You, W. S.; Su, Z. M.; Wang, E. B. Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation. J. Am. Chem. Soc. 2014, 136, 5359–5366.CrossRefGoogle Scholar
  18. [18]
    Lv, H. J.; Geletii, Y. V.; Zhao, C. C.; Vickers, J. W.; Zhu, G. B.; Luo, Z.; Song, J.; Lian, T. Q.; Musaev, D. G.; Hill, C. L. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 2012, 41, 7572–7589.CrossRefGoogle Scholar
  19. [19]
    Garai, S.; Bögge, H.; Merca, A.; Petina, O. A.; Grego, A.; Gouzerh, P.; Haupt, E. T. K.; Weinstock, I. A.; Müller, A. Densely packed hydrophobic clustering: Encapsulated valerates form a high-temperature-stable {Mo132} capsule system. Angew. Chem., Int. Ed. 2016, 55, 6634–6637.CrossRefGoogle Scholar
  20. [20]
    Bayaguud, A.; Chen, K.; Wei, Y. G. Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Res. 2016, 9, 3858–3867.CrossRefGoogle Scholar
  21. [21]
    Busche, C.; Vilà-Nadal, L.; Yan, J.; Miras, H. N.; Long, D. L.; Georgiev, V. P.; Asenov, A.; Pedersen, R. H.; Gadegaard, N.; Mirza, M. M. et al. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters. Nature 2014, 515, 545–549.CrossRefGoogle Scholar
  22. [22]
    Yin, P. C.; Wu, B.; Li, T.; Bonnesen, P. V.; Hong, K. L.; Seifert, S.; Porcar, L.; Do, C.; Keum, J. K. Reduction-triggered self-assembly of nanoscale molybdenum oxide molecular clusters. J. Am. Chem. Soc. 2016, 138, 10623–10629.CrossRefGoogle Scholar
  23. [23]
    Wang, Z.; Daemen, L. L.; Cheng, Y.; Mamontov, E.; Bonnesen, P. V.; Hong, K.; Ramirez-Cuesta, A. J.; Yin, P. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior. Chem.—Eur. J. 2016, 22, 14131–14136.Google Scholar
  24. [24]
    Kopilevich, S.; Gottlieb, H.; Keinan-Adamsky, K.; Müller, A.; Weinstock, I. A. The uptake and assembly of alkanes within a porous nanocapsule in water: New information about hydrophobic confinement. Angew. Chem., Int. Ed. 2016, 55, 4476–4481.CrossRefGoogle Scholar
  25. [25]
    Zhang, J.; Song, Y. F.; Cronin, L.; Liu, T. B. Self-assembly of organic-inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups. J. Am. Chem. Soc. 2008, 130, 14408–14409.CrossRefGoogle Scholar
  26. [26]
    Yin, P. C.; Wu, P. F.; Xiao, Z. C.; Li, D.; Bitterlich, E.; Zhang, J.; Cheng, P.; Vezenov, D. V.; Liu, T. B.; Wei, Y. G. A double-tailed fluorescent surfactant with a hexavanadate cluster as the head group. Angew. Chem., Int. Ed. 2011, 50, 2521–2525.CrossRefGoogle Scholar
  27. [27]
    Wu, P. F.; Xiao, Z. C.; Zhang, J.; Hao, J.; Chen, J. K.; Yin, P. C.; Wei, Y. G. DMAP-catalyzed esterification of pentaerythritol-derivatized POMs: A new route for the functionalization of polyoxometalates. Chem. Commun. 2011, 47, 5557–5559.CrossRefGoogle Scholar
  28. [28]
    Yin, P. C.; Li, D.; Liu, T. B. Solution behaviors and selfassembly of polyoxometalates as models of macroions and amphiphilic polyoxometalate-organic hybrids as novel surfactants. Chem. Soc. Rev. 2012, 41, 7368–7383.CrossRefGoogle Scholar
  29. [29]
    Liu, T. B.; Diemann, E.; Li, H. L.; Dress, A. W. M.; Müller, A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 2003, 426, 59–62.CrossRefGoogle Scholar
  30. [30]
    Liu, T. B.; Langston, M. L. K.; Li, D.; Pigga, J. M.; Pichon, C.; Todea, A. M.; Müller, A. Self-recognition among different polyprotic macroions during assembly processes in dilute solution. Science 2011, 331, 1590–1592.CrossRefGoogle Scholar
  31. [31]
    Wang, Z. J.; Clary, K. N.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 2013, 5, 100–103.CrossRefGoogle Scholar
  32. [32]
    Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: Artificial enzyme mimics. Chem. Soc. Rev. 2014, 43, 1734–1787.Google Scholar
  33. [33]
    Sun, X. L.; Guo, S. J.; Chung, C. S.; Zhu, W. L.; Sun, S. H. A sensitive H2O2 assay based on dumbbell-like PtPd-Fe3O4 nanoparticles. Adv. Mater. 2013, 25, 132–136.CrossRefGoogle Scholar
  34. [34]
    Cai, K.; Lv, Z. C.; Chen, K.; Huang, L.; Wang, J.; Shao, F.; Wang, Y. J.; Han, H. Y. Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity. Chem. Commun. 2013, 49, 6024–6026.CrossRefGoogle Scholar
  35. [35]
    Hu, Y. L.; Lee, C. C.; Ribbe, M. W. Extending the carbon chain: Hydrocarbon formation catalyzed by vanadium/ molybdenum nitrogenases. Science 2011, 333, 753–755.CrossRefGoogle Scholar
  36. [36]
    Liu, T. B. Hydrophilic macroionic solutions: What happens when soluble ions reach the size of nanometer scale? Langmuir 2010, 26, 9202–9213.CrossRefGoogle Scholar
  37. [37]
    Pigga, J. M.; Kistler, M. L.; Shew, C. Y.; Antonio, M. R.; Liu, T. B. Counterion distribution around hydrophilic molecular macroanions: The source of the attractive force in selfassembly. Angew. Chem., Int. Ed. 2009, 48, 6538–6542.CrossRefGoogle Scholar
  38. [38]
    Poyton, M. F.; Sendecki, A. M.; Cong, X.; Cremer, P. S. Cu2+ binds to phosphatidylethanolamine and increases oxidation in lipid membranes. J. Am. Chem. Soc. 2016, 138, 1584–1590.CrossRefGoogle Scholar
  39. [39]
    Stohs, S. J.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol. Med. 1995, 18, 321–336.CrossRefGoogle Scholar
  40. [40]
    Nogueira, R. F. P.; Oliveira, M. C.; Paterlini, W. C. Simple and fast spectrophotometric determination of H2O2 in photo- Fenton reactions using metavanadate. Talanta 2005, 66, 86–91.CrossRefGoogle Scholar
  41. [41]
    Lei, C. X.; Hu, S. Q.; Shen, G. L.; Yu, R. Q. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta 2003, 59, 981–988.CrossRefGoogle Scholar
  42. [42]
    Mizuno, N.; Kamata, K. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord. Chem. Rev. 2011, 255, 2358–2370.CrossRefGoogle Scholar
  43. [43]
    Sun, M.; Zhang, J. Z.; Putaj, P.; Caps, V.; Lefebvre, F.; Pelletier, J.; Basset, J. M. Catalytic oxidation of light alkanes (C1–C4) by heteropoly compounds. Chem. Rev. 2014, 114, 981–1019.CrossRefGoogle Scholar
  44. [44]
    Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.Department of Polymer ScienceUniversity of AkronAkronUSA
  3. 3.Institute of POM-based MaterialsHubei University of TechnologyWuhanChina
  4. 4.State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina

Personalised recommendations