Skip to main content
Log in

Polyoxometalate-based nanozyme: Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Proteolytic degradation of amyloid-β (Aβ) aggregates and clearance of Aβ-induced reactive oxygen species (ROS) have received significant attention for the treatment of Alzheimer’s disease (AD). However, it is difficult, and often unfeasible, to directly upregulate or transport intracellular native enzymes. More importantly, penetration of the blood-brain barrier (BBB) has presented a major impediment. Herein, we report on the rational design of a polyoxometalatebased nanozyme with both protease-like activity for depleting Aβ aggregates, and superoxide dismutase (SOD)-like activity for scavenging Aβ-mediated ROS. Furthermore, this nanozyme acts as a metal chelator to remove Cu from Cu-induced Aβ oligomers. More intriguingly, the nanozyme can cross the BBB and exhibits low toxicity. This work provides new insights into the design and synthesis of inorganic nanozymes as multifunctional therapeutic agents in the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haass, C.; Selkoe, D. J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 2007, 8, 101–112.

    Article  Google Scholar 

  2. Götz, J.; Ittner, L. M. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat. Rev. Neurosci. 2008, 9, 532–544.

    Article  Google Scholar 

  3. Zhang, M.; Mao, X. B.; Yu, Y.; Wang, C. X.; Yang, Y. L.; Wang. C. Nanomaterials for reducing amyloid cytotoxicity. Adv. Mater. 2013, 25, 3780–3801.

    Article  Google Scholar 

  4. Qing, G. Y.; Zhao, S. L.; Xiong, Y. T.; Lv, Z. Y.; Jiang, F. L.; Liu, Y.; Chen, H.; Zhang, M. X.; Sun. T. L. Chiral effect at protein/graphene interface: A bioinspired perspective to understand amyloid formation. J. Am. Chem. Soc. 2014, 136, 10736–10742.

    Article  Google Scholar 

  5. Edrey, Y. H.; Oddo, S.; Cornelius, C.; Caccamo, A.; Calabrese, V.; Buffenstein, R. Oxidative damage and amyloid-β metabolism in brain regions of the longest-lived rodents. J. Neurosci. Res. 2014, 92, 195–205.

    Article  Google Scholar 

  6. Choi, J. S.; Braymer, J. J.; Nang, R. P. R.; Ramamoorthy, A.; Lim, M. H. Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity. Proc. Natl. Acad. Sci. USA 2010, 107, 21990–21995.

    Article  Google Scholar 

  7. Geng, J.; Li, M.; Ren, J. S.; Wang, E. B.; Qu, X. G. Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer's disease. Angew. Chem., Int. Ed. 2011, 50, 4184–4188.

    Article  Google Scholar 

  8. Huang, F.; Wang, J. Z.; Qu, A. T.; Shen, L. L.; Liu, J. J.; Liu, J. F.; Zhang, Z. K.; An, Y. L.; Shi, L. Q. Maintenance of amyloid β peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles. Angew. Chem., Int. Ed. 2014, 53, 8985–8990.

    Article  Google Scholar 

  9. Lee, T. Y.; Suh, J. Target-selective peptide-cleaving catalysts as a new paradigm in drug design. Chem. Soc. Rev. 2009, 38, 1949–1957.

    Article  Google Scholar 

  10. Grasso, G.; Giuffrid, M. L.; Rizzarelli, E. Metallostasis and amyloid β-degrading enzymes. Metallomics 2012, 4, 937–949.

    Article  Google Scholar 

  11. Geng, J.; Li, M.; Wu, L.; Ren, J. S.; Qu, X. G. Liberation of copper from amyloid plaques: Making a risk factor useful for Alzheimer’s disease treatment. J. Med. Chem. 2012, 55, 9146–9155.

    Article  Google Scholar 

  12. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  Google Scholar 

  13. Faller, P.; Hureau, C.; La Penna, G. Metal ions and intrinsically disordered proteins and peptides: From Cu/Zn amyloid-β to general principles. Acc. Chem. Res. 2014, 47, 2252–2259.

    Article  Google Scholar 

  14. Cabaleiro-Lago, C.; Quinlan-Pluck, F.; Lynch, I.; Lindman, S.; Minogue, A. M.; Thulin, E.; Walsh, D. M.; Dawson, K. A.; Linse, S. Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J. Am. Chem. Soc. 2008, 130, 15437–15443.

    Article  Google Scholar 

  15. Yoo, S.; Yang, M.; Brender, J. R.; Subramanian, V.; Sun, K.; Joo, N. E.; Jeong, S. H.; Ramamoorthy, A.; Kotov, N. A. Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: Functional similarities with proteins. Angew. Chem., Int. Ed. 2011, 50, 5110–5115.

    Article  Google Scholar 

  16. Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 2002, 102, 4501–4523.

    Article  Google Scholar 

  17. Gao, N.; Sun, H. J.; Dong, K.; Ren, J. S.; Duan, T. C.; Xu, C.; Qu, X. G. Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer’s disease. Nat. Commun. 2014, 5, 3422.

    Google Scholar 

  18. Timári, S.; Cerea, R.; Várnagy, K. Characterization of CuZnSOD model complexes from a redox point of view: Redox properties of copper(II) complexes of imidazole containing ligands. J. Inorg. Biochem. 2011, 105, 1009–1017.

    Article  Google Scholar 

  19. Macdonell, A.; Johnson, N. A. B.; Surman, A. J.; Cronin, L. Configurable nanosized metal oxide oligomers via precise “click” coupling control of hybrid polyoxometalates. J. Am. Chem. Soc. 2015, 137, 5662–5665.

    Article  Google Scholar 

  20. Xing, X. L.; Liu, R. J.; Yu, X. L.; Zhang, G. J.; Cao, H. B.; Yao, J. N.; Ren, B. Z.; Jiang, Z. X.; Zhao, H. Self-assembly of CdS quantum dots with polyoxometalate encapsulated gold nanoparticles: Enhanced photocatalytic activities. J. Mater. Chem. A 2013, 1, 1488–1494.

    Article  Google Scholar 

  21. Wang, Y. F.; Neyman, A.; Arkhangelsky, E.; Gitis, V.; Meshi, L.; Weinstock, I. A. Self-Assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle. J. Am. Chem. Soc. 2009, 131, 17412–17422.

    Article  Google Scholar 

  22. Hinterwirth, H.; Kappe, S.; Waitz, T.; Prohaska, T.; Lindner, W.; Lämmerhofer, M. Quantifying thiol ligand density of self-assembled monolayers on gold nanoparticles by inductively coupled plasma-mass spectrometry. ACS Nano 2013, 7, 1129–1136.

    Article  Google Scholar 

  23. Ojea-Jiménez, I.; García-Fernández, L.; Lorenzo, J.; Puntes, V. F. Facile preparation of cationic gold nanoparticlebioconjugates for cell penetration and nuclear targeting. ACS Nano 2012, 6, 7692–7702.

    Article  Google Scholar 

  24. Keita, B.; Biboum, R. N.; Mbomekallé, I. M.; Floquet, S.; Simonnet-Jégat, C.; Cadot, E.; Miserque, F.; Berthet, P.; Nadjo, L. One-step synthesis and stabilization of gold nanoparticles in water with the simple oxothiometalate Na2[Mo33-S)(µ-S)3(Hnta)3]. J. Mater. Chem. 2008, 18, 3196–3199.

    Article  Google Scholar 

  25. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  Google Scholar 

  26. Gao, N.; Sun, H. J.; Dong, K.; Ren, J. S.; Qu, X. G. Goldnanoparticle- based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chem.—Eur. J. 2015, 21, 829–835.

    Article  Google Scholar 

  27. Symes, M. D.; Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electroncoupled- proton buffer. Nat. Chem. 2013, 5, 403–409.

    Article  Google Scholar 

  28. Perera, V. S.; Liu, H. J.; Wang, Z. Q.; Huang, S. D. Cellpermeable Au@ZnMoS4 core–shell nanoparticles: Toward a novel cellular copper detoxifying drug for Wilson’s disease. Chem. Mater. 2013, 25, 4703–4709.

    Article  Google Scholar 

  29. Chen, Z. W.; Li, Z. H.; Wang, J. S.; Ju, E. G.; Zhou, L.; Ren, J. S.; Qu, X. G. A multi-synergistic platform for sequential irradiation-activated high-performance apoptotic cancer therapy. Adv. Funct. Mater. 2014, 24, 522–529.

    Article  Google Scholar 

  30. Lin, Z. M.; Monteiro-Riviere, N. A.; Riviere, J. E. Pharmacokinetics of metallic nanoparticles. WIREs Nanomed. Nanobiotechnol. 2015, 7, 189–217.

    Article  Google Scholar 

  31. Ye, D.; Raghnaill, M. N.; Bramini, M.; Mahon, E.; Åberg, C.; Salvati, A.; Dawson, K. A. Nanoparticle accumulation and transcytosis in brain endothelial cell layers. Nanoscale, 2013, 5, 11153–11165.

    Article  Google Scholar 

  32. Soto, C.; Sigurdsson, E. M.; Morelli, L.; Kumar, R. A.; Castano, E. M.; Frangione, B. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer’s therapy. Nat. Med. 1998, 4, 822–826.

    Article  Google Scholar 

  33. Xiong, L. Q.; Yang, T. S.; Yang, Y.; Xu, C. J.; Li, F. Y. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 2010, 31, 7078–7085.

    Article  Google Scholar 

  34. Yu, H. J.; Ren, J. S.; Qu, X. G. Time-dependent DNA condensation induced by amyloid β-peptide. Biophys. J. 2007, 92, 185–191.

    Article  Google Scholar 

  35. Geng, J.; Zhao, C.; Ren, J.; Qu, X. Alzheimer’s disease amyloid beta converting left-handed Z-DNA back to righthanded B-form. Chem. Commun. 2010, 46, 7187–7189.

    Article  Google Scholar 

  36. Geng, J.; Qu, K. G.; Ren, J. S.; Qu, X. G. Rapid and efficient screening of Alzheimer’s disease β-amyloid inhibitors using label-free gold nanoparticles. Mol. BioSyst. 2010, 6, 2389–2391.

    Article  Google Scholar 

  37. Zhang, G. J.; Keita, B.; Biboum, R. N.; Miserque, F.; Berthet, P.; Dolbecq, A.; Mialane, P.; Catalae, L.; Nadjo, L. Synthesis of various crystalline gold nanostructures in water: The polyoxometalate β-[H4PMo12O40]3– as the reducing and stabilizing agent. J. Mater. Chem. 2009, 19, 8639–8644.

    Article  Google Scholar 

  38. Yiu, H. H. P.; Wright, P. A.; Botting, N. P. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. J. Mol. Catal. B: Enzym. 2001, 15, 81–92.

    Article  Google Scholar 

  39. Adachi, T.; Marklund, S. L. Interactions between human extracellular superoxide dismutase C and sulfated polysaccharides. J. Biol. Chem. 1989, 264, 8537–8541.

    Google Scholar 

  40. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision B. 01; Gaussian, Inc.: Wallingford, CT, 2009.

    Google Scholar 

  41. Runge, E.; Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997–1000.

    Article  Google Scholar 

  42. Becker, A. D. A new mixing of hartree-fock and local densityfunctional theories. J. Chem. Phys. 1993, 98, 1372–1377.

    Article  Google Scholar 

  43. Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle- Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

    Article  Google Scholar 

  44. Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283.

    Article  Google Scholar 

  45. Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem. Phys. Lett. 1998, 286, 253–260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Qu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, N., Dong, K., Zhao, A. et al. Polyoxometalate-based nanozyme: Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease. Nano Res. 9, 1079–1090 (2016). https://doi.org/10.1007/s12274-016-1000-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1000-6

Keywords

Navigation