Skip to main content

Inorganic-Organic Hybrid Materials Based on Nanopolyoxometalates

  • Chapter
  • First Online:
Supramolecular Chemistry of Biomimetic Systems

Abstract

Various types of nano-scale polyoxometalates (POMs) with beautiful topologies has been synthesized successfully by destroying the hydration shell of the anions caused by the extremely hydrophilic surface. Their magnetic, electronic, and photoluminescent properties and valuable applications in catalysis, medicine, and material science are discussed. Meanwhile, the last ten years have witnessed a remarkable development in terms of preformed organic-inorganic POM-based hybrid systems for the rational design of functional architectures, assemblies and materials. Hydrophilic POMs of different sizes and shapes can interact with hydrophobic cationic surfactants, the resulting materials show amphiphilic properties with electrostatic interactions between the hydrophilic and hydrophobic components, called Surfactant-Encapsulated Clusters (SECs) or Surfactant-Encapsulated-POMs (SEPs). This hydrophobic surfactant-encapsulated clusters (HSECs) can fabricated through covalent or non-covalent interaction, which can construct ordered self-assembly, e.g. robust onionlike structures, honeycomb films or giant vesicle. Moreover, This ordered giant vesicle acts as building block to fabricate three dimensional structures. In addition, SECs can further self-assemble to give a variety of nanostructures on various surfaces/interfaces, among them, the most representative nanostructures discussed below is ordered honeycomb films, which is carried out by a simple solvent-evaporation method. It is reasonable to assume that the condensed water microdroplets induced by the quick evaporation of solvents play an important role as template for the formation of pores. Various factors are being investigated to construct thin films with different morphologies. We hope the inorganic-organic hybrid functional materials based on POMs will bridge polyoxometalate chemistry and material chemistry, which can be further explored application in many fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed Engl 30:34–48

    Article  Google Scholar 

  2. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, Berlin

    Google Scholar 

  3. Rao CNR, Müller A, Cheetham AK (Eds) (2006) The chemistry of nanomaterials: synthesis, properties and applications. Wiley, New York

    Google Scholar 

  4. Gouzerh P, Proust A (1998) Main-group element, organic, and organometallic derivatives of polyoxometalates. Chem Rev 98:77–112

    Article  Google Scholar 

  5. Weinstock IA (1998) Homogeneous-phase electron-transfer reactions of polyoxometalates. Chem Rev 98:113–170

    Article  Google Scholar 

  6. Müller A, Peters F, Pope MT, Gatteschi D (1998) Polyoxometalates: very large clusters nanoscale magnets. Chem Rev 98:239–272

    Article  Google Scholar 

  7. Mizuno N, Kamata K (2011) Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord Chem Rev 255:2358–2370

    Article  Google Scholar 

  8. Hill CL (2007) Special issue: polyoxometalates in catalysis-foreword. J Mol Catal A: Chem 262:1–1

    Article  Google Scholar 

  9. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98:327–358

    Article  Google Scholar 

  10. Hasenknopf B (2005) Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. Front Biosci 10:275

    Article  Google Scholar 

  11. Long DL, Burkholder E, Cronin L (2007) Polyoxometalate clusters, nanostructures and materials: from self-assembly to designer materials and devices. Chem Soc Rev 36:105–121

    Article  Google Scholar 

  12. Kim KC, Pope MT (1999) Cation-directed structure changes in polyoxometalate chemistry. equilibria between isomers of bis (9-tungstophosphatodioxouranate (VI)) complexes. J Am Chem Soc 121:8512–8517

    Article  Google Scholar 

  13. Briot E, Piquemal JY, Vennat M, Brégeault JM, Chottard G, Manoli JM (2000) Aqueous acidic hydrogen peroxide as an efficient medium for tungsten insertion into MCM-41 mesoporous molecular sieves with high metal dispersion. J Mater Chem 10:953–958

    Article  Google Scholar 

  14. Zhai QG, Wu XY, Chen SM, Zhao ZG, Lu CG (2007) Construction of Ag/1, 2, 4-triazole/polyoxometalates hybrid family varying from diverse supramolecular assemblies to 3-D rod-packing framework. Inorg Chem 46:5046–5058

    Article  Google Scholar 

  15. Landsmann S, Luka M, Polarz S (2012) Bolaform surfactants with polyoxometalate head groups and their assembly into ultra-small monolayer membrane vesicles. Nat Commun 3:1299

    Article  Google Scholar 

  16. Izzet G, Abécassis B, Brouri D, Piot M, Matt B, Serapian SA, Bo C, Proust A (2016) Hierarchical self-assembly of polyoxometalate-based hybrids driven by metal coordination and electrostatic interactions: from discrete supramolecular species to dense monodisperse nanoparticles. J Am Chem Soc 138:5093–5099

    Article  Google Scholar 

  17. Liu H, Hsu CH, Lin ZW, Shan WP, Wang J, Jiang J, Huang MJ, Lotz B, Yu XF, Zhang WB, Yue K, Cheng SZD (2014) Two-dimensional nanocrystals of molecular janus particles. J Am Chem Soc 136:10691–10699

    Article  Google Scholar 

  18. Sun HG, Tu YF, Wang CL, Van Horn RM, Tsai CC, Graham MJ, Sun B, Lotz B, Zhang WB, Cheng SZD (2011) Hierarchical structure and polymorphism of a sphere-cubic shape amphiphile based on a polyhedral oligomeric silsesquioxane-[60] fullerene conjugate. J Mater Chem 21:14240–14247

    Article  Google Scholar 

  19. Keggin JF (1934) Structure and formula of 12-phosphotungstic acid. Proc R Soc A 144:75–79

    Article  Google Scholar 

  20. Dawson B (1953) The structure of the 9 (18)-heteropoly anion in potassium 9 (18)-tungstophosphate, K6 (P2W18O62)·14H2O. Acta Cryst 6:113–126

    Article  Google Scholar 

  21. Waugh JCT, Schoemaker DP, Pauling L (1954) On the structure of the heteropoly anion in ammonium 9-molybdomanganate, (NH4)6MnMo9O32·8H2O. Acta Cryst 7:438–441

    Article  Google Scholar 

  22. Anderson JS (1937) Constitution of the poly-acids. Nature 140:850–851

    Article  Google Scholar 

  23. Tsay YH, Silverton JVZ (1973) Krist 137:256

    Google Scholar 

  24. Lindquist I (1950) A crystal structure investigation of the paramolybdate ion. Ark Kemi 2:325–341

    Google Scholar 

  25. Müller A, Beckmann E, Bögge H, Schmidtmann M, Dress A (2002) Inorganic chemistry goes protein size: a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking. Angew Chem Int Ed 41:1162–1167

    Article  Google Scholar 

  26. Bösing M, Nöh A, Loose I, Krebs B (1998) Highly efficient catalysts in directed oxygen-transfer processes: synthesis, structures of novel manganese-containing heteropolyanions, and applications in regioselective epoxidation of dienes with hydrogen peroxide. J Am Chem Soc 120:7252–7259

    Article  Google Scholar 

  27. Sugeta M, Yamase T (1993) Crystal structure and luminescence site of Na9 (EuW10O36)·32H2O. Bull Chem Soc Jpn 66:444–449

    Article  Google Scholar 

  28. Müller A, Das SK, Fedin VP, Krickemeyer E, Beugholt C, Bögge H, Schmidtmann M, Hauptfleisch B (1999) Rapid and simple isolation of the crystalline molybdenum-blue compounds with discrete and linked nanosized ring-shaped anions: Na15 [Mo{126}{VI}Mo{28}VO462H14 (H2O)70] 0.5[Mo{124}{VI}Mo{28}VO457H14(H2O)68] 0.5·ca.400H2O and Na22 [Mo{118}{VI}Mo{28} VO442H14 (H2O)58]·ca.250H2O. Z Anorg Allg Chem 625:1187–1192

    Article  Google Scholar 

  29. Müler A, Krickemeyer E, Bögge H, Schmidtmann M, Peters F (1998) Organizational forms of matter: an inorganic super fullerene and keplerate based on molybdenum oxide. Angew Chem Int Ed 37:3359–3363

    Article  Google Scholar 

  30. Müller A, Sarkar S, Shah SQN, Bögge H, Schmidtmann M, Sarkar S, Kögerler P, Hauptfleisch B, Trautwein AX, Schünemann V (1999) Archimedean synthesis and magicnumbers: “sizing” giant molybdenum-oxide-based molecular spheres of the keplerate type. Angew Chem Int Ed 38:3238–3241

    Article  Google Scholar 

  31. Botar B, Kogerler P, Hill CL (2005) [{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36-: a molecular quantum spin icosidodecahedron. Chem Commun 25:3138–3140

    Article  Google Scholar 

  32. Howell RC, Perez FG, Jain S, Horrocks JWD, Rheingold AL, Francesconi LC (2001) A new type of heteropolyoxometalates formed from lacunary polyoxotungstate ions and europium or yttrium cations. Angew Chem Int Ed 113:4155–4158

    Article  Google Scholar 

  33. Mal SS, Kortz U (2005) The wheel-shaped Cu20 Tungstophosphate [Cu20Cl(OH)24(H2O)12 (P8W48O184)]25-Ion. Angew Chem Int Ed 44:3777–3780

    Article  Google Scholar 

  34. Todea AM, Merca A, Bögge H, Slageren J, Dressel M, Engelhardt L, Luban M, Glaser T, Henry M, Müller A (2007) Extending the (Mo)Mo5}12M30 capsule keplerate sequence: A {Cr30 cluster of s = 3/2 metal centers with a Na(H2O)12 encapsulate. Angew Chem Int Ed 46:6106–6110

    Article  Google Scholar 

  35. Pichon C, Mialane P, Dolbecq A, Marrot J, Rivière E, Bassil BS, Kortz U, Keita B, Nadjo L, Sécheresse F (2008) Octa-and nonanuclear nickel (II) polyoxometalate clusters: synthesis and electrochemical and magnetic characterizations. Inorg Chem 47:11120–11128

    Article  Google Scholar 

  36. Müller A, Luban M, Schröder C, Modler R, Kögerler P, Axenovich M, Schnack J, Canfield P, Bud’ko S, N N (2001) Classical and quantum magnetism in giant keplerate magnetic molecules. Chem Phys Chem 2:517–521

    Article  Google Scholar 

  37. Lopez X, Maestre JM, Bo C, Poblet JM (2001) Electronic properties of polyoxometalates: A DFT study of α/β-[XM12O40] n-relative stability (M = W, Mo and X a main group element). J Am Chem Soc 123:9571–9576

    Article  Google Scholar 

  38. Jabbour D, Keita B, Nadjo L, Kortz U, Mal SS (2005) The wheel-shaped Cu20-tungstophosphate [Cu20Cl(OH24(H2O)12(P8W48O184)25-, redox and electrocatalytic properties. Electrochem Commun 7:841–847

    Article  Google Scholar 

  39. Keita B, Zhang G, Dolbecq A, Mialane P, Sécheresse F, Miserque F, Nadjo L (2007) MoV-MoVI Mixed valence polyoxometalates for facile synthesis of stabilized metal nanoparticles: Electrocatalytic oxidation of alcohols. J Phys Chem C 111:8145–8148

    Article  Google Scholar 

  40. Mbomekalle IM, Keita B, Lu YW, Nadjo L, Contant R, Belai N, Pope MT (2004) Synthesis, characterization and electrochemistry of the novel Dawson-type tungstophosphate [H4PW18O62]7- and first transition metal ions derivatives. Eur J Inorg Chem 2004:276–285

    Article  Google Scholar 

  41. Liu TB, Imber B, Diemann E, Liu G, Cokleski K, Li HL, Chen ZQ, Müller A (2006) Deprotonations and charges of well-defined Mo72Fe30 nanoacids simply stepwise tuned by pH allow control/variation of related self-assembly processes. J Am Chem Soc 128:15914–15920

    Article  Google Scholar 

  42. Kistler ML, Liu TB, Gouzerh P, Todea AM, Müller AM (2009) Molybdenum-oxide based unique polyprotic nanoacids showing different deprotonations and related assembly processes in solution. Dalton Trans 26:5094–5100

    Article  Google Scholar 

  43. Todea AM, Merca A, Bögge H, Glaser T, Pigga JM, Langston MLK, Liu T, Prozorov R, Luban M, Schröder C, Casey WH, Müller A (2010) Porous capsules {(M) M5}12FeIII30 (M = MoVI, WVI): sphere surface supramolecular chemistry with 20 ammonium ions, related solution properties, and tuning of magnetic exchange interactions. Angew Chem Int Ed 49:514–519

    Article  Google Scholar 

  44. Kistler ML, Patel KG, Liu TB (2009) Accurately tuning the charge on giant polyoxometalate type keplerates through stoichiometric interaction with cationic surfactants. Langmuir 25:7328–7334

    Article  Google Scholar 

  45. Wang Y, Li H, Qi W, Yang Y, Yan Y, Li B, Wu LX (2012) Supramolecular assembly of chiral polyoxometalate complexes for asymmetric catalytic oxidation of thioethers. J Mater Chem 22:9181–9188

    Article  Google Scholar 

  46. Lee IS, Long JR, Prusiner SB, Safar JG (2005) Selective precipitation of prions by polyoxometalate complexes. J Am Chem Soc 127:13802–13803

    Article  Google Scholar 

  47. Geng J, Li M, Ren JS, Wang EB, Qu XG (2011) Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer’s disease. Angew Chem Int Ed 50:4184–4188

    Article  Google Scholar 

  48. Geng J, Li M, Ren JS, Wang EB, Qu XG (2011) Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer’s disease. Angew Chem 123:4270–4274

    Article  Google Scholar 

  49. Yan XH, Zhu PL, Fei JB, Li JB (2010) Self-assembly of peptide-inorganic hybrid spheres for adaptive encapsulation of guests. Adv Mater 22:1283–1287

    Article  Google Scholar 

  50. Goovaerts V, Stroobants K, Absillis G, Parac-Vogt TN (2013) Molecular interactions between serum albumin proteins and Keggin type polyoxometalates studied using luminescence spectroscopy. Phys Chem Chem Phys 15:18378–18387

    Article  Google Scholar 

  51. Kosik KS (1992) Alzheimer’s disease: a cell biological perspective. Science 256:780–783

    Article  Google Scholar 

  52. Yamin G, Ono K, Inayathullah M, Teplow DB (2008) Amyloid β-protein assembly as a therapeutic target of Alzheimer’s disease. Curr Pharm Des 14:3231–3246

    Article  Google Scholar 

  53. Gao N, Sun H, Dong K, Ren J, Duan T, Xu C, Qu XG (2014) Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer’s disease. Nat Commun 5:3422

    Google Scholar 

  54. Li M, Xu C, Wu L, Ren J, Wang E, Qu XG (2013) Self-assembled peptide-polyoxometalate hybrid nanospheres: two in one enhances targeted inhibition of amyloid β-peptide aggregation associated with Alzheimer’s disease. Small 9:3455–3461

    Article  Google Scholar 

  55. Li J, Chen Z, Zhou M, Jing J, Li W, Wang Y, Wu L, Wang L, Wang Y, Lee M (2016) Polyoxometalate-driven self-assembly of short peptides into multivalent nanofibers with enhanced antibacterial activity. Angew Chem Int Ed 55:2592–2595

    Article  Google Scholar 

  56. Xu J, Zhao S, Han Z, Wang X, Song YF (2011) Layer-by-layer assembly of Na9 [EuW10O36]·32H2O and layered double hydroxides leading to ordered ultra-thin films: cooperative effect and orientation effect. Chem Eur J 17:10365–10371

    Article  Google Scholar 

  57. Kurth DG, Lehmann P, Volkmer D, Cölfen H, Koop MJ, Müller A, Chesne AD (2000) Surfactant-encapsulated clusters (SECs): (DODA)20(NH4)[H3Mo57V6(NO)6O183(H2O)18], a case study. Chem Eur J 6:385–393

    Article  Google Scholar 

  58. Caruso F, Kurth DG, Volkmer D, Koop MJ, Müller A (1998) Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayer films. Langmuir 14:3462–3465

    Article  Google Scholar 

  59. Iler RK (1966) Multilayers of colloidal particles. J Colloid Interface Sci 21:569–594

    Article  Google Scholar 

  60. Niu P, Hao J (2011) Fabrication of titanium dioxide and tungstophosphate nanocomposite films and their photocatalytic degradation for methyl orange. Langmuir 27:13590–13597

    Article  Google Scholar 

  61. Fan D, Hao J (2009) Fabrication and electrocatalytic properties of chitosan and Keplerate-type polyoxometalate {Mo72Fe30} hybrid films. J Phys Chem B 113: 7513-7516

    Google Scholar 

  62. Han F, Kambala V, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A 359:25–40

    Article  Google Scholar 

  63. Niu P, Hao J (2012) Efficient degradation of methyl orange via multilayer films of titanium dioxide and silicotungstic acid. Sci China Chem 55:2366–2372

    Article  Google Scholar 

  64. Niu P, Hao J (2014) Efficient degradation of organic dyes by titaniumdioxide–silicotungstic acid nanocomposite films: Influenceof inorganic salts and surfactants. Colloids Surf A 443:501–507

    Article  Google Scholar 

  65. Niu P, Hao J (2013) Photocatalytic degradation of methyl orange by titanium dioxide-decatungstate nanocomposite films supported on glass slides. Colloids Surf A 431:127–132

    Article  Google Scholar 

  66. Volkmer D, Chesne AD, Kurth DG, Schnablegger H, Lehmann P, Koop J, Müller A (2000) Toward nanodevices: synthesis and characterization of the nanoporous surfactant-encapsulated Keplerate (DODA)40(NH4)2[(H2O)n ⊂ Mo132O372(CH3COO)30(H2O)72]. J Am Chem Soc 122:1995–1998

    Article  Google Scholar 

  67. Zhang J, Song Y, Cronin L, Liu T (2008) Self-assembly of organic–inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups. J Am Chem Soc 130:14408–14409

    Article  Google Scholar 

  68. Jia Y, Zhang J, Zhang Z, Li Q, Wang E (2014) Metal-centered polyoxometalates encapsulated by surfactant resulting in the thermotropic liquid crystal materials. Inorg Chem Commun 43:5–9

    Article  Google Scholar 

  69. Li W, Wu L (2014) Liquid crystals from star-like clusto-supramolecular macromolecules. Polym Int 63:1750–1764

    Article  Google Scholar 

  70. He Z, Ai H, Li B, Wu L (2012) A supramolecular gel based on an adenine symmetrically grafted Anderson-type polyoxometalate complex. Chin Sci Bull 57:4304–4309

    Article  Google Scholar 

  71. Sun H, Yang Q, Hao J (2016) Self-patterning porous films of giant vesicles of {Mo72Fe30}(DODMA)3 complexes as frameworks. Adv Colloid Interface Sci 235:14–22

    Article  Google Scholar 

  72. Tanford C (1972) Micelle shape and size. J Phys Chem 76:3020–3024

    Article  Google Scholar 

  73. Zhou SJ, Feng YQ, Chen MJ, Li Q, Liu BY, Cao JM, Sun XF, Li HG, Hao J (2016) Robust onionlike structures with magnetic and photodynamic properties formed by a fullerene C60-POM hybrid. Chem Commun 52:12171–12174

    Article  Google Scholar 

  74. Song A, Dong S, Jia X, Hao J, Liu W, Liu T (2005) An onion phase in salt-free zero-charged catanionic surfactant solutions. Angew Chem Int Ed 44:4018–4021

    Article  Google Scholar 

  75. Dong R, Zhong Z, Hao J (2012) Self-assembly of onion-like vesicles induced by charge and rheological properties in anionic-nonionic surfactant solutions. Soft Matter 8:7812–7821

    Article  Google Scholar 

  76. Widawski G, Rawiso M, Francois B (1994) Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369:387–389

    Article  Google Scholar 

  77. Sun F, Cai W, Li Y, Cao B, Lei Y, Zhang L (2004) Morphology-controlled growth of large-area two-dimensional ordered pore arrays. Adv Funct Mater 14:283–288

    Article  Google Scholar 

  78. Kulinowski KM, Jiang P, Vaswani H, Colvin VL (2000) Porous metals from colloidal templates. Adv Mater 12:833–838

    Article  Google Scholar 

  79. Nishikawa T, Nishida J, Ookura R, Nishimura SI, Scheumann V, Zizlsperger M, Lawall R, Knoll W, Shimomura M (2000) Web-structured films of an amphiphilic polymer from water in oil emulsion: fabrication and characterization. Langmuir 16:1337–1342

    Article  Google Scholar 

  80. Shimomura M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 6:11–16

    Article  Google Scholar 

  81. Fan D, Jia X, Tang P, Hao J, Liu T (2007) Self-patterning of hydrophobic materials into highly ordered honeycomb nanostructures at the air/water interface. Angew Chem Int Ed 119:3406–3409

    Article  Google Scholar 

  82. Tang P, Hao J (2011) Macroporous honeycomb films of surfactant-encapsulated polyoxometalates at air/water interface and their electrochemical properties. Adv Colloid Interface Sci 161:163–170

    Article  Google Scholar 

  83. Tang P, Hao J (2009) Formation mechanism and morphology modulation of honeycomb hybrid films made of polyoxometalates/surfactants at the air/water interface. J Colloid Interface Sci 333:1–5

    Article  Google Scholar 

  84. Pitois O, Francois B (1999) Crystallization of condensation droplets on a liquid surface. Colloid Polym Sci 277:574–578

    Article  Google Scholar 

  85. Stenzel MH (2002) Formation of regular honeycomb-patterned porous film by self-organization. Aust J Chem 55:239–243

    Article  Google Scholar 

  86. Block MJ (1956) Surface tension as the cause of Bénard cells and surface deformation in a liquid film. Nature 178:650–651

    Article  Google Scholar 

  87. Tang P, Hao J (2010) Photoluminescent honeycomb films templated by microwater droplets. Langmuir 26:3843–3847

    Article  Google Scholar 

  88. Tang P, Hao J (2010) Directionally electrodeposited gold nanoparticles into honeycomb macropores and their surface-enhanced Raman scattering. New J Chem 34:1059–1062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingcheng Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, Y., Hao, J. (2017). Inorganic-Organic Hybrid Materials Based on Nanopolyoxometalates. In: Li, J. (eds) Supramolecular Chemistry of Biomimetic Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-6059-5_14

Download citation

Publish with us

Policies and ethics