Nano Research

, Volume 8, Issue 1, pp 117–128 | Cite as

Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

Research Article


Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode materials is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na+ ions per formula unit. However, increasing the Na content in PBAs cathode materials remains a major challenge. Here we show that sodium iron hexacyanoferrate with high Na content can be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mAh·g−1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism has been systematically studied by in situ Raman spectroscopy, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. The Na-rich sodium iron hexacyanoferrate can function as a plenteous Na reservoir and has great potential as a cathode material for practical Na-ion batteries.


sodium iron hexacyanoferrate Na-rich cathode sodium-ion batteries Prussian blue analogues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_588_MOESM1_ESM.pdf (2.2 mb)
Supplementary material, approximately 2.20 MB.


  1. [1]
    Han, P. X.; Yue, Y. H.; Zhang, L. X.; Xu, H. X.; Liu, Z. H.; Zhang, K. J.; Zhang, C. J.; Dong, S. M.; Ma, W.; Cui, G. L. Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon 2012, 50, 1355–1362.CrossRefGoogle Scholar
  2. [2]
    Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391.CrossRefGoogle Scholar
  3. [3]
    Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N. A.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.CrossRefGoogle Scholar
  4. [4]
    Nan, C. Y.; Lu, J.; Li, L. H.; Li, L. L.; Peng, Q.; Li, Y. D. Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Res. 2013, 6, 469–477.CrossRefGoogle Scholar
  5. [5]
    Zhong, X.; Zhang, H.; Liu, Y.; Bai, J. W.; Liao, L.; Huang, Y.; Duan, X. F. High-capacity silicon-air battery in alkaline solution. ChemSusChem 2012, 5, 177–180.CrossRefGoogle Scholar
  6. [6]
    Cao, F. F.; Guo, Y. G.; Wan, L. J. Better lithium-ion batteries with nanocable-like electrode materials. Energy Environ. Sci. 2011, 4, 1634–1642.CrossRefGoogle Scholar
  7. [7]
    Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang, X. J. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 2013, 4, 2365.Google Scholar
  8. [8]
    Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.CrossRefGoogle Scholar
  9. [9]
    Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.CrossRefGoogle Scholar
  10. [10]
    Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elkaïm, E.; Delmas, C. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 2013, 12, 74–80.CrossRefGoogle Scholar
  11. [11]
    You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. A zero-strain insertion cathode material of nickel ferricyanide for sodiumion batteries. J. Mater. Chem. A 2013, 1, 14061–14065.CrossRefGoogle Scholar
  12. [12]
    Yin, Y. X.; Xin, S.; Wan, L. J.; Li, C. J.; Guo, Y. G. SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. Sci. China Chem. 2012, 55, 1314–1318.CrossRefGoogle Scholar
  13. [13]
    Ji, H. X.; Wu, X. L.; Fan, L. Z.; Krien, C.; Fiering, I.; Guo, Y. G.; Mei, Y. F.; Schmidt, O. G. Self-wound composite nanomembranes as electrode materials for lithium ion batteries. Adv. Mater. 2010, 22, 4591–4595.CrossRefGoogle Scholar
  14. [14]
    Zhu, H. L.; Jia, Z.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Vaaland, O.; Han, X. G.; Li, T.; Hu, L. B. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 13, 3093–3100.CrossRefGoogle Scholar
  15. [15]
    Chen, S. Q.; Bao, P. T.; Huang, X. D.; Sun, B.; Wang, G. X. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 2014, 7, 85–94.CrossRefGoogle Scholar
  16. [16]
    Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.CrossRefGoogle Scholar
  17. [17]
    Su, D. W.; Ahn, H. J.; Wang, G. X. β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries. NPG Asia Mater. 2013, 5, e70.CrossRefGoogle Scholar
  18. [18]
    Su, D. W.; Dou, S. X.; Wang, G. X. Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 11185–11194.CrossRefGoogle Scholar
  19. [19]
    Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.CrossRefGoogle Scholar
  20. [20]
    Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 2013, 135, 13870–13878.CrossRefGoogle Scholar
  21. [21]
    Liang, S. Q.; Chen, T.; Pan, A. Q.; Liu, D. W.; Zhu, Q. Y.; Cao, G. Z. Synthesis of Na1.25V3O8 nanobelts with excellent long-term stability for rechargeable lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 11913–11917.CrossRefGoogle Scholar
  22. [22]
    Komaba, S.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Ito, A.; Ohsawa, Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 2011, 3, 4165–4168.CrossRefGoogle Scholar
  23. [23]
    Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.CrossRefGoogle Scholar
  24. [24]
    Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.CrossRefGoogle Scholar
  25. [25]
    Su, D. W.; Wang, C. Y.; Ahn, H. J.; Wang, G. X. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem.— Eur. J. 2013, 19, 10884–10889.CrossRefGoogle Scholar
  26. [26]
    Su, D. W.; Dou, S. X.; Wang, G. X. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 2014, 50, 4192–4195.CrossRefGoogle Scholar
  27. [27]
    Nishijima, M.; Gocheva, I. D.; Okada, S.; Doi, T.; Yamaki, J.; Nishida, T. Cathode properties of metal trifluorides in Li and Na secondary batteries. J. Power Sources 2009, 190, 558–562.CrossRefGoogle Scholar
  28. [28]
    Cao, Y. L.; Xiao, L. F.; Wang, W.; Choi, D.; Nie, Z. M.; Yu, J. G.; Saraf, L. V.; Yang, Z. G.; Liu, J. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater. 2011, 23, 3155–3160.CrossRefGoogle Scholar
  29. [29]
    Sun, Q.; Ren, Q. Q.; Fu, Z. W. NASICON-type Fe2(MoO4)3 thin film as cathode for rechargeable sodium ion battery. Electrochem. Commun. 2012, 23, 145–148.CrossRefGoogle Scholar
  30. [30]
    Pasta, M.; Wessells, C. D.; Huggins, R. A.; Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for gridscale energy storage. Nat. Commun. 2012, 3, 1149.CrossRefGoogle Scholar
  31. [31]
    Wessells, C. D.; Huggins, R. A.; Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2011, 2, 550.CrossRefGoogle Scholar
  32. [32]
    Zhou, M.; Qian, J. F.; Ai, X. P.; Yang, H. X. Redox-active Fe(CN)6 4−-doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries. Adv. Mater. 2011, 23, 4913–4917.CrossRefGoogle Scholar
  33. [33]
    Yue, Y. F.; Binder, A. J.; Guo, B. K.; Zhang, Z. Y.; Qiao, Z. A.; Tian, C. C.; Dai, S. Mesoporous Prussian blue analogues: Template-free synthesis and sodium-ion battery applications. Angew. Chem. Int. Ed. 2014, 53, 3134–3137.CrossRefGoogle Scholar
  34. [34]
    Kong, B.; Tang, J.; Wu, Z. X.; Wei, J.; Wu, H.; Wang, Y. C.; Zheng, G. F.; Zhao, D. Y. Ultralight mesoporous magnetic frameworks by interfacial assembly of prussian blue nanocubes. Angew. Chem. Int. Ed. 2014, 53, 2888–2892.CrossRefGoogle Scholar
  35. [35]
    Lu, Y. H.; Wang, L.; Cheng, J. G.; Goodenough, J. B. Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 2012, 48, 6544–6546.CrossRefGoogle Scholar
  36. [36]
    Lee, H.; Kim, Y. I.; Park, J. K.; Choi, J. W. Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem. Commun. 2012, 48, 8416–8418.CrossRefGoogle Scholar
  37. [37]
    Tomoyuki, M.; Masamitsu, T.; Yutaka, M. A sodium manganese ferrocyanide thin film for Na-ion batteries. Chem. Commun. 2013, 49, 2750–2752.CrossRefGoogle Scholar
  38. [38]
    Kareis, C. M.; Lapidus, S. H.; Her, J. H.; Stephens, P. W.; Miller, J. S. Non-Prussian blue structures and magnetic ordering of Na2MnII[MnII(CN)6] and Na2MnII[MnII(CN)6]·2H2O. J. Am. Chem. Soc. 2011, 134, 2246–2254.CrossRefGoogle Scholar
  39. [39]
    Takachi, M.; Matsuda, T.; Moritomo, Y. Cobalt hexacyanoferrate as cathode material for Na+ secondary battery. Appl. Phys. Express 2013, 6, 025802.CrossRefGoogle Scholar
  40. [40]
    Asakura, D.; Li, C. H.; Mizuno, Y.; Okubo, M.; Zhou, H.; Talham, D. R. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: Core@shell nanoparticles with enhanced cyclability. J. Am. Chem. Soc. 2013, 135, 2793–2799.CrossRefGoogle Scholar
  41. [41]
    Wu, X. Y.; Sun, M. Y.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem 2014, 7, 407–411.CrossRefGoogle Scholar
  42. [42]
    Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Yang, H. X. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 2013, 31, 145–148.CrossRefGoogle Scholar
  43. [43]
    Wang, L.; Lu, Y. H.; Liu, J.; Xu, M. W.; Cheng, J. G.; Zhang, D. W.; Goodenough, J. B. A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 2013, 52, 1964–1967.CrossRefGoogle Scholar
  44. [44]
    Arora, P.; White, R. E.; Doyle, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 1998, 145, 3647–3667.CrossRefGoogle Scholar
  45. [45]
    You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643–1647.CrossRefGoogle Scholar
  46. [46]
    Bak, S. M.; Nam, K. W.; Chang, W.; Yu, X.; Hu, E.; Hwang, S.; Stach, E. A.; Kim, K. B.; Chung, K. Y.; Yang, X. Q. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chem. Mater. 2013, 25, 337–351.CrossRefGoogle Scholar
  47. [47]
    Newville, M. Ifeffit: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 2001, 8, 322–324.CrossRefGoogle Scholar
  48. [48]
    Matsuda, T.; Kim, J.; Moritomo, Y. Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange. J. Am. Chem. Soc. 2010, 132, 12206–12207.CrossRefGoogle Scholar
  49. [49]
    Haight, S. M.; Schwartz, D. T.; Lilga, M. A. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration. J. Electrochem. Soc. 1999, 146, 1866–1872.CrossRefGoogle Scholar
  50. [50]
    Samain, L.; Gilbert, B.; Grandjean, F.; Long, G. J.; Strivay, D. Redox reactions in Prussian blue containing paint layers as a result of light exposure. J. Anal. At. Spectrom. 2013, 28, 524–535.CrossRefGoogle Scholar
  51. [51]
    Ito, A.; Suenaga, M.; Ono, K. Mossbauer study of soluble Prussian blue, insoluble Prussian blue and Turnbulls blue. J. Chem. Physics 1968, 48, 3597–3599.CrossRefGoogle Scholar
  52. [52]
    Buschmann, W. E.; Ensling, J.; Gutlich, P.; Miller, J. S. Electron transfer, linkage isomerization, bulk magnetic order, and spin-glass behavior in the iron hexacyanomanganate Prussian blue analogue. Chem.—Eur. J. 1999, 5, 3019–3028.CrossRefGoogle Scholar
  53. [53]
    Okubo, M.; Asakura, D.; Mizuno, Y.; Kudo, T.; Zhou, H. S.; Okazawa, A.; Kojima, N.; Ikedo, K.; Mizokawa, T.; Honma, I. Ion-induced transformation of magnetism in a bimetallic CuFe Prussian blue analogue. Angew. Chem. Int. Ed. 2011, 50, 6269–6273.CrossRefGoogle Scholar
  54. [54]
    Mizuno, Y.; Okubo, M.; Kagesawa, K.; Asakura, D.; Kudo, T.; Zhou, H. S.; Oh-ishi, K.; Okazawa, A.; Kojima, N. Precise electrochemical control of ferromagnetism in a cyanide-bridged bimetallic coordination polymer. Inorg. Chem. 2012, 51, 10311–10316.CrossRefGoogle Scholar
  55. [55]
    Nossol, E.; Gorgatti Zarbin, A. J. Transparent films from carbon nanotubes/prussian blue nanocomposites: Preparation, characterization, and application as electrochemical sensors. J. Mater. Chem. 2012, 22, 1824–1833.CrossRefGoogle Scholar
  56. [56]
    Giorgetti, M.; Guadagnini, L.; Tonelli, D.; Minicucci, M.; Aquilanti, G. Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi-technique approach. Phys. Chem. Chem. Phys. 2012, 14, 5527–5537.CrossRefGoogle Scholar
  57. [57]
    Nam, K. W.; Bak, S. M.; Hu, E. Y.; Yu, X. Q.; Zhou, Y. N.; Wang, X. J.; Wu, L. J.; Zhu, Y. M.; Chung, K. Y.; Yang, X. Q. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 1047–1063.CrossRefGoogle Scholar
  58. [58]
    Yokoyama, T.; Tokoro, H.; Ohkoshi, S.; Hashimoto, K.; Okamoto, K.; Ohta, T. Photoinduced phase transition of RbMnFe(CN)6 studied by X-ray-absorption fine structure spectroscopy. Phys. Rev. B 2002, 66, 184111.CrossRefGoogle Scholar
  59. [59]
    Yu, X. Q; Lyu, Y. C.; Gu, L.; Wu, H. M.; Bak, S. M.; Zhou, Y. N.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K. W.; Yang, X. Q. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 2014, 4, 1300950.CrossRefGoogle Scholar
  60. [60]
    Bleuzen, A.; Lomenech, C.; Escax, V.; Villain, F.; Varret, F.; Moulin, C. C. D.; Verdaguer, M. Photoinduced ferrimagnetic systems in Prussian blue analogues C xICo4[Fe(CN)6]y (C I = alkali cation). 1. Conditions to observe the phenomenon. J. Am. Chem. Soc. 2000, 122, 6648–6652.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of ChemistryChinese Academy of Sciences (CAS)BeijingChina
  2. 2.Chemistry DepartmentBrookhaven National LaboratoryUptonUSA
  3. 3.Department of Energy and Materials EngineeringDongguk UniversitySeoulRepublic of Korea

Personalised recommendations