Skip to main content
Log in

Research Progress on the Solid Electrolyte of Solid-State Sodium-Ion Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Because sodium-ion batteries are relatively inexpensive, they have gained significant traction as large-scale energy storage devices instead of lithium-ion batteries in recent years. However, sodium-ion batteries have a lower energy density than lithium-ion batteries because sodium-ion batteries have not been as well developed as lithium-ion batteries. Solid-state batteries using solid electrolytes have a higher energy density than liquid batteries in regard to applications with sodium-ion batteries, making them more suitable for energy storage systems than liquid batteries. Due to their low ionic conductivity, solid electrolytes are currently unable to achieve comparable performance to liquid electrolytes at room temperature. In this review, we discuss the advancements in SSEs applied to sodium-ion batteries in recent years, including inorganic solid electrolytes, such as Na–β-Al2O3, NASICON and Na3PS4, polymer solid electrolytes based on PEO, PVDF-HFP and PAN, and plastic crystal solid electrolytes mainly composed of succinonitrile. Additionally, appropriate solutions for low ionic conductivity, a narrow electrochemical stability window and poor contact with electrodes, which are the significant flaws in current SSEs, are discussed in this review.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright © 2017, Royal Society of Chemistry; b ionic conductivity of SSEs and liquid electrolytes at different temperatures. Reprinted with permission from Ref. [55]. Copyright © 2018, John Wiley and Sons

Fig. 3
Fig. 4

Copyright © 2018, Elsevier

Fig. 5

Copyright © 2020, Elsevier

Fig. 6

Copyright © 2020, American Chemical Society

Fig. 7

Copyright © 2021, John Wiley and Sons

Fig. 8

Copyright © 2019, John Wiley and Sons

Fig. 9

Copyright © 2021, John Wiley and Sons

Fig. 10

Copyright © 2016, John Wiley and Sons

Fig. 11

Copyright © 2018, American Chemical Society

Fig. 12

Copyright © 2019, John Wiley and Sons

Fig. 13

Copyright © 2016, John Wiley and Sons

Fig. 14

Copyright © 2020, American Chemical Society

Fig. 15

Copyright © 2019, Elsevier

Fig. 16

Copyright © 2022, Royal Society of Chemistry

Fig. 17
Fig. 18

Copyright © 2015, Royal Society of Chemistry

Fig. 19

Copyright © 2021, Springer

Fig. 20

Copyright © 2019, American Chemical Society

Fig. 21

Copyright © 2020, Springer-Verlag GmbH Germany, part of Springer Nature

Fig. 22

Copyright © 2022, American Chemical Society

Fig. 23

Copyright © 2020, Elsevier

Fig. 24

Copyright © 2016, Royal Society of Chemistry

Fig. 25
Fig. 26

Copyright © 2022, John Wiley and Sons

Fig. 27

Copyright © 2021, Taylor & Francis

Fig. 28

Copyright © 2022, John Wiley and Sons

Fig. 29

Copyright © 2021, American Chemical Society

Fig. 30

Copyright © 2021, American Chemical Society

Fig. 31

Copyright © 2021 The Author(s)

Fig. 32

Copyright © 2021, Elsevier

Fig. 33

Copyright © 2022, American Chemical Society

Fig. 34

Copyright © 2021, Springer Nature

Fig. 35

Copyright © 2020, Elsevier

Fig. 36

Copyright © 2022, John Wiley and Sons

Fig. 37

Copyright © 2022, American Chemical Society

Fig. 38
Fig. 39

Copyright © 2015 Elsevier Ltd. All rights reserved

Fig. 40

Copyright © 2019 Elsevier Ltd. All rights reserved

Fig. 41

Copyright © 2021, American Chemical Society

Fig. 42
Fig. 43

Similar content being viewed by others

References

  1. Zhou, C.T., Bag, S., Thangadurai, V.: Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett. 3, 2181–2198 (2018). https://doi.org/10.1021/acsenergylett.8b00948

    Article  CAS  Google Scholar 

  2. Peng, L.S., Wei, Z.D.: Catalyst engineering for electrochemical energy conversion from water to water: water electrolysis and the hydrogen fuel cell. Engineering 6, 653–679 (2020). https://doi.org/10.1016/j.eng.2019.07.028

    Article  CAS  Google Scholar 

  3. Wang, Z.Y., Zhao, Z.J., Baucom, J., et al.: Nitrogen-doped graphene foam as a metal-free catalyst for reduction reactions under a high gravity field. Engineering 6, 680–687 (2020). https://doi.org/10.1016/j.eng.2019.12.018

    Article  CAS  Google Scholar 

  4. Cai, Y., Chu, G.W., Luo, Y., et al.: An evaluation of metronidazole degradation in a plasma-assisted rotating disk reactor coupled with TiO2 in aqueous solution. Engineering 7, 1603–1610 (2021). https://doi.org/10.1016/j.eng.2020.03.020

    Article  CAS  Google Scholar 

  5. Huang, X.J., Qb, M., Chen, H.J., et al.: Renewable energy conversion, storage, and efficient utilization. Science 360, 47–51 (2018)

    Google Scholar 

  6. Du, S.F.: Recent advances in electrode design based on one-dimensional nanostructure arrays for proton exchange membrane fuel cell applications. Engineering 7, 33–49 (2021). https://doi.org/10.1016/j.eng.2020.09.014

    Article  CAS  Google Scholar 

  7. Mohideen, M.M., Radhamani, A.V., Ramakrishna, S., et al.: Recent insights on iron based nanostructured electrocatalyst and current status of proton exchange membrane fuel cell for sustainable transport. J. Energy Chem. 69, 466–489 (2022). https://doi.org/10.1016/j.jechem.2022.01.035

    Article  CAS  Google Scholar 

  8. Marappan, M., Palaniswamy, K., Velumani, T., et al.: Performance studies of proton exchange membrane fuel cells with different flow field designs-review. Chem. Rec. 21, 663–714 (2021). https://doi.org/10.1002/tcr.202000138

    Article  CAS  PubMed  Google Scholar 

  9. Steele, B.C.H., Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345–352 (2001). https://doi.org/10.1038/35104620

    Article  CAS  PubMed  Google Scholar 

  10. Lim, B., Jiang, M.J., Camargo, P.H.C., et al.: Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009). https://doi.org/10.1126/science.1170377

    Article  CAS  PubMed  Google Scholar 

  11. Hu, Y.S.: Batteries: getting solid. Nat. Energy 1, 16042 (2016). https://doi.org/10.1038/nenergy.2016.42

    Article  CAS  Google Scholar 

  12. Wu, T., Wen, Z.Y., Sun, C.Z., et al.: Disordered carbon tubes based on cotton cloth for modulating interface impedance in β″-Al2O3-based solid-state sodium metal batteries. J. Mater. Chem. A 6, 12623–12629 (2018). https://doi.org/10.1039/c8ta01883a

    Article  CAS  Google Scholar 

  13. Larcher, D., Tarascon, J.M.: Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085

    Article  CAS  PubMed  Google Scholar 

  14. Goodenough, J.B.: How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204 (2018). https://doi.org/10.1038/s41928-018-0048-6

    Article  Google Scholar 

  15. Yabuuchi, N., Kubota, K., Dahbi, M., et al.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  16. Service RF: Hydrogen cars: fad or the future? Science 324, 1257–1259 (2009). https://doi.org/10.1126/science.324_1257

    Article  PubMed  Google Scholar 

  17. Hwang, J.Y., Myung, S.T., Sun, Y.K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g

    Article  CAS  PubMed  Google Scholar 

  18. Che, H.Y., Chen, S.L., Xie, Y.Y., et al.: Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 10, 1075–1101 (2017). https://doi.org/10.1039/c7ee00524e

    Article  CAS  Google Scholar 

  19. Kim, H., Kim, H., Ding, Z., et al.: Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6, 1600943 (2016). https://doi.org/10.1002/aenm.201600943

    Article  CAS  Google Scholar 

  20. Ramesh, A., Tripathi, A., Balaya, P.: A mini review on cathode materials for sodium-ion batteries. Int. J. Appl. Ceram. Technol. 19, 913–923 (2022). https://doi.org/10.1111/ijac.13920

    Article  CAS  Google Scholar 

  21. Huang, Q., Chen, G.X., Zheng, P., et al.: NASICON-structured Na ion conductor for next generation energy storage. Funct. Mater. Lett. 14, 2130005 (2021). https://doi.org/10.1142/s179360472130005x

    Article  CAS  Google Scholar 

  22. Palomares, V., Serras, P., Villaluenga, I., et al.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012). https://doi.org/10.1039/C2EE02781J

    Article  CAS  Google Scholar 

  23. Deng, J.Q., Luo, W.B., Chou, S.L., et al.: Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater. 8, 1701428 (2018). https://doi.org/10.1002/aenm.201701428

    Article  CAS  Google Scholar 

  24. Pan, H.L., Hu, Y.S., Chen, L.Q.: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013). https://doi.org/10.1039/c3ee40847g

    Article  CAS  Google Scholar 

  25. Peng, J., Zhang, W., Liu, Q.N., et al.: Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, 2108384 (2022). https://doi.org/10.1002/adma.202108384

    Article  CAS  Google Scholar 

  26. Chae, M.S., Elias, Y., Aurbach, D.: Tunnel-type sodium manganese oxide cathodes for sodium-ion batteries. ChemElectroChem 8, 798–811 (2021). https://doi.org/10.1002/celc.202001323

    Article  CAS  Google Scholar 

  27. Wang, Y.S., Feng, Z.M., Cui, P.X., et al.: Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nat. Commun. 12, 13 (2021). https://doi.org/10.1038/s41467-020-20169-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peters, J., Buchholz, D., Passerini, S., et al.: Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 9, 1744–1751 (2016). https://doi.org/10.1039/c6ee00640j

    Article  CAS  Google Scholar 

  29. Reddy, M.V., Mauger, A., Julien, C.M., et al.: Brief history of early lithium-battery development. Materials 13, 1884 (2020). https://doi.org/10.3390/ma13081884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeng, Y.: Sodium metal batteries, electrochemical devices. China Patent CN114824167A, 29 Jul 2022

  31. Tian, Y., An, Y.L., Wei, C.L., et al.: Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy 78, 105344 (2020). https://doi.org/10.1016/j.nanoen.2020.105344

    Article  CAS  Google Scholar 

  32. Nakamoto, K., Sakamoto, R., Sawada, Y., et al.: Over 2 V aqueous sodium-ion battery with Prussian blue-type electrodes. Small Methods 3, 1800220 (2019). https://doi.org/10.1002/smtd.201800220

    Article  CAS  Google Scholar 

  33. Jeong, S., Kim, B.H., Park, Y.D., et al.: Artificially coated NaFePO4 for aqueous rechargeable sodium-ion batteries. J. Alloys Compd. 784, 720–726 (2019). https://doi.org/10.1016/j.jallcom.2019.01.046

    Article  CAS  Google Scholar 

  34. Zhang, J., Wang, D.W., Lv, W., et al.: Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges. Adv. Energy Mater. 8, 1801361 (2018). https://doi.org/10.1002/aenm.201801361

    Article  CAS  Google Scholar 

  35. Mauger, Julien, Paolella, et al.: Building better batteries in the solid state: a review. Materials 12, 3892 (2019). https://doi.org/10.3390/ma12233892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin, T., Ji, X., Wang, P.F., et al.: High-energy aqueous sodium-ion batteries. Angew. Chem. Int. Ed. 60, 11943–11948 (2021). https://doi.org/10.1002/anie.202017167

    Article  CAS  Google Scholar 

  37. Jiang, P., Lei, Z.Y., Chen, L., et al.: Polyethylene glycol-Na+ interface of vanadium hexacyanoferrate cathode for highly stable rechargeable aqueous sodium-ion battery. ACS Appl. Mater. Interfaces 11, 28762–28768 (2019). https://doi.org/10.1021/acsami.9b04849

    Article  CAS  PubMed  Google Scholar 

  38. Bin, D., Wang, F., Tamirat, A.G., et al.: Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8, 1703008 (2018). https://doi.org/10.1002/aenm.201703008

    Article  CAS  Google Scholar 

  39. Zhang, H., Qin, B.S., Han, J., et al.: Aqueous/nonaqueous hybrid electrolyte for sodium-ion batteries. ACS Energy Lett. 3, 1769–1770 (2018). https://doi.org/10.1021/acsenergylett.8b00919

    Article  CAS  Google Scholar 

  40. Li, Q., Cao, Z., Wahyudi, W., et al.: Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries. ACS Energy Lett. 6, 69–78 (2021). https://doi.org/10.1021/acsenergylett.0c02140

    Article  CAS  Google Scholar 

  41. Olsson, E., Cottom, J., Alptekin, H., et al.: Investigating the role of surface roughness and defects on EC breakdown, as a precursor to SEI formation in hard carbon sodium-ion battery anodes. Small 18, 2200177 (2022). https://doi.org/10.1002/smll.202200177

    Article  CAS  Google Scholar 

  42. Dubois, M., Ghanbaja, J., Billaud, D.: Electrochemical intercalation of sodium ions into poly(para-phenylene) in carbonate-based electrolytes. Synth. Met. 90, 127–134 (1997). https://doi.org/10.1016/S0379-6779(97)81261-1

    Article  CAS  Google Scholar 

  43. Hofmann, A., Wang, Z.Q., Bautista, S.P., et al.: Comprehensive characterization of propylene carbonate based liquid electrolyte mixtures for sodium-ion cells. Electrochim. Acta 403, 139670 (2022). https://doi.org/10.1016/j.electacta.2021.139670

    Article  CAS  Google Scholar 

  44. Subramanyan, K., Lee, Y.S., Aravindan, V.: Impact of carbonate-based electrolytes on the electrochemical activity of carbon-coated Na3V2(PO4)2F3 cathode in full-cell assembly with hard carbon anode. J. Colloid Interface Sci. 582, 51–59 (2021). https://doi.org/10.1016/j.jcis.2020.08.043

    Article  CAS  PubMed  Google Scholar 

  45. Kamath, G., Cutler, R.W., Deshmukh, S.A., et al.: In silico based rank-order determination and experiments on nonaqueous electrolytes for sodium ion battery applications. J. Phys. Chem. C 118, 13406–13416 (2014). https://doi.org/10.1021/jp502319p

    Article  CAS  Google Scholar 

  46. Liu, Q., Wu, F., Mu, D.B., et al.: A theoretical study on Na+ solvation in carbonate ester and ether solvents for sodium-ion batteries. Phys. Chem. Chem. Phys. 22, 2164–2175 (2020). https://doi.org/10.1039/c9cp05636j

    Article  CAS  PubMed  Google Scholar 

  47. Ponrouch, A., Monti, D., Boschin, A., et al.: Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3, 22–42 (2015). https://doi.org/10.1039/c4ta04428b

    Article  CAS  Google Scholar 

  48. Wan, M., Tang, Y., Wang, L.L., et al.: Core-shell hexacyanoferrate for superior Na-ion batteries. J. Power Sources 329, 290–296 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.059

    Article  CAS  Google Scholar 

  49. Viet Thieu, Q.Q., Hoang, H., Le, V.T., et al.: Enhancing electrochemical performance of sodium Prussian blue cathodes for sodium-ion batteries via optimizing alkyl carbonate electrolytes. Ceram. Int. 47, 30164–30171 (2021). https://doi.org/10.1016/j.ceramint.2021.07.195

    Article  CAS  Google Scholar 

  50. Jang, J.Y., Kim, H., Lee, Y., et al.: Cyclic carbonate based-electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries. Electrochem. Commun. 44, 74–77 (2014). https://doi.org/10.1016/j.elecom.2014.05.003

    Article  CAS  Google Scholar 

  51. Ponrouch, A., Marchante, E., Courty, M., et al.: In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572–8583 (2012). https://doi.org/10.1039/c2ee22258b

    Article  CAS  Google Scholar 

  52. Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53, 10169–10173 (2014). https://doi.org/10.1002/anie.201403734

    Article  CAS  Google Scholar 

  53. Lin, Z.H., Xia, Q.B., Wang, W.L., et al.: Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat 1, 376–389 (2019). https://doi.org/10.1002/inf2.12023

    Article  CAS  Google Scholar 

  54. Slater, M.D., Kim, D., Lee, E., et al.: Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013). https://doi.org/10.1002/adfm.201200691

    Article  CAS  Google Scholar 

  55. Zhao, C.L., Liu, L.L., Qi, X.G., et al.: Solid-state sodium batteries. Adv. Energy Mater. 8, 1703012 (2018). https://doi.org/10.1002/aenm.201703012

    Article  CAS  Google Scholar 

  56. Amaral, M.M., Venâncio, R., Peterlevitz, A.C., et al.: Recent advances on quasi-solid-state electrolytes for supercapacitors. J. Energy Chem. 67, 697–717 (2022). https://doi.org/10.1016/j.jechem.2021.11.010

    Article  CAS  Google Scholar 

  57. Janek, J., Zeier, W.G.: A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141

    Article  Google Scholar 

  58. Guin, M., Tietz, F., Guillon, O.: New promising NASICON material as solid electrolyte for sodium-ion batteries: correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3−xO12. Solid State Ion. 293, 18–26 (2016). https://doi.org/10.1016/j.ssi.2016.06.005

    Article  CAS  Google Scholar 

  59. Monti, D., Jónsson, E., Palacín, M.R., et al.: Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity. J. Power Sources 245, 630–636 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.153

    Article  CAS  Google Scholar 

  60. Kaur, G., Kumar, H., Singla, M.: Diverse applications of ionic liquids: a comprehensive review. J. Mol. Liq. 351, 118556 (2022). https://doi.org/10.1016/j.molliq.2022.118556

    Article  CAS  Google Scholar 

  61. Ghandi, K.: A review of ionic liquids, their limits and applications. Green Sustain. Chem. 4, 44–53 (2014). https://doi.org/10.4236/gsc.2014.41008

    Article  CAS  Google Scholar 

  62. Hagiwara, R., Matsumoto, K., Hwang, J., et al.: Sodium ion batteries using ionic liquids as electrolytes. Chem. Rec. 19, 758–770 (2019). https://doi.org/10.1002/tcr.201800119

    Article  CAS  PubMed  Google Scholar 

  63. Basile, A., Hilder, M., Makhlooghiazad, F., et al.: Sodium energy storage: ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies. Adv. Energy Mater. 8(17), 1870078 (2018). https://doi.org/10.1002/aenm.201870078

    Article  CAS  Google Scholar 

  64. Xu, C.X., Yang, G., Wu, D.X., et al.: Roadmap on ionic liquid electrolytes for energy storage devices. Chem. Asian J. 16, 549–562 (2021). https://doi.org/10.1002/asia.202001414

    Article  CAS  PubMed  Google Scholar 

  65. Wang, Y.M., Song, S.F., Xu, C.H., et al.: Development of solid-state electrolytes for sodium-ion battery: a short review. Nano Mater. Sci. 1, 91–100 (2019). https://doi.org/10.1016/j.nanoms.2019.02.007

    Article  Google Scholar 

  66. Lian, P.J., Zhao, B.S., Zhang, L.Q., et al.: Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J. Mater. Chem. A 7, 20540–20557 (2019). https://doi.org/10.1039/c9ta04555d

    Article  CAS  Google Scholar 

  67. Hu, C.J., Qi, J.Z., Zhang, Y.X., et al.: Room-temperature all-solid-state sodium battery based on bulk interfacial superionic conductor. Nano Lett. 21, 10354–10360 (2021). https://doi.org/10.1021/acs.nanolett.1c03605

    Article  CAS  PubMed  Google Scholar 

  68. Chen, S.L., Che, H.Y., Feng, F., et al.: Poly(vinylene carbonate)-based composite polymer electrolyte with enhanced interfacial stability to realize high-performance room-temperature solid-state sodium batteries. ACS Appl. Mater. Interfaces 11, 43056–43065 (2019). https://doi.org/10.1021/acsami.9b11259

    Article  CAS  PubMed  Google Scholar 

  69. Chen, S.L., Feng, F., Che, H.Y., et al.: High performance solid-state sodium batteries enabled by boron contained 3D composite polymer electrolyte. Chem. Eng. J. 406, 126736 (2021). https://doi.org/10.1016/j.cej.2020.126736

    Article  CAS  Google Scholar 

  70. Yao, X.Y., Huang, B.X., Yin, J.Y., et al.: All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science. Chin. Phys. B 25, 018802 (2016). https://doi.org/10.1088/1674-1056/25/1/018802

    Article  CAS  Google Scholar 

  71. Schnell, J., Günther, T., Knoche, T., et al.: All-solid-state lithium-ion and lithium metal batteries: paving the way to large-scale production. J. Power Sources 382, 160–175 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.062

    Article  CAS  Google Scholar 

  72. Xu, G.L., Amine, R., Abouimrane, A., et al.: Challenges in developing electrodes, electrolytes, and diagnostics tools to understand and advance sodium-ion batteries. Adv. Energy Mater. 8, 1702403 (2018). https://doi.org/10.1002/aenm.201702403

    Article  CAS  Google Scholar 

  73. Zheng, S.Y., Yan, J.Y., Wang, K.: Engineering research progress of electrochemical microreaction technology: a novel method for electrosynthesis of organic chemicals. Engineering 7, 22–32 (2021). https://doi.org/10.1016/j.eng.2020.06.025

    Article  CAS  Google Scholar 

  74. Duchêne, L., Kühnel, R.S., Rentsch, D., et al.: A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. Chem. Commun. 53, 4195–4198 (2017). https://doi.org/10.1039/c7cc00794a

    Article  Google Scholar 

  75. Yang, Z., Jin, M.Y., Cheng, S., et al.: Developing a high-voltage electrolyte based on conjuncto-hydroborates for solid-state sodium batteries. J. Mater. Chem. A 10, 7186–7194 (2022). https://doi.org/10.1039/d1ta09386j

    Article  CAS  Google Scholar 

  76. Chen, S.L., Feng, F., Yin, Y.M., et al.: Plastic crystal polymer electrolytes containing boron based anion acceptors for room temperature all-solid-state sodium-ion batteries. Energy Storage Mater. 22, 57–65 (2019). https://doi.org/10.1016/j.ensm.2018.12.023

    Article  Google Scholar 

  77. Zhang, Z.Z., Shao, Y.J., Lotsch, B., et al.: New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018). https://doi.org/10.1039/c8ee01053f

    Article  CAS  Google Scholar 

  78. Banerjee, A., Park, K.H., Heo, J.W., et al.: Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed. 55, 9634–9638 (2016). https://doi.org/10.1002/anie.201604158

    Article  CAS  Google Scholar 

  79. Kim, J.J., Yoon, K., Park, I., et al.: Progress in the development of sodium-ion solid electrolytes. Small Methods 1, 1700219 (2017). https://doi.org/10.1002/smtd.201700219

    Article  CAS  Google Scholar 

  80. Famprikis, T., Canepa, P., Dawson, J.A., et al.: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3

    Article  CAS  PubMed  Google Scholar 

  81. Bachman, J.C., Muy, S., Grimaud, A., et al.: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563

    Article  CAS  PubMed  Google Scholar 

  82. Lacivita, V., Wang, Y., Bo, S.H., et al.: Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. J. Mater. Chem. A 7, 8144–8155 (2019). https://doi.org/10.1039/c8ta10498k

    Article  CAS  Google Scholar 

  83. Lu, X.C., Xia, G.G., Lemmon, J.P., et al.: Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J. Power Sources 195, 2431–2442 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.120

    Article  CAS  Google Scholar 

  84. Goodenough, J.B.: Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013). https://doi.org/10.1021/ar2002705

    Article  CAS  PubMed  Google Scholar 

  85. Lu, Y., Li, L., Zhang, Q., et al.: Electrolyte and interface engineering for solid-state sodium batteries. Joule 2, 1747–1770 (2018). https://doi.org/10.1016/j.joule.2018.07.028

    Article  CAS  Google Scholar 

  86. Birnie, D.P., III.: On the structural integrity of the spinel block in the β"-alumina structure. Acta Crystallogr. Sect. B Struct. Sci. 68, 118–122 (2012). https://doi.org/10.1107/s0108768112002649

    Article  CAS  Google Scholar 

  87. Kummer, J.T.: Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem. 29, 2453–2475 (1967). https://doi.org/10.1016/0022-1902(67)80301-4

    Article  Google Scholar 

  88. Sudworth, J.L.: The sodium/sulphur battery. J. Power Sources 11, 143–154 (1984). https://doi.org/10.1016/0378-7753(84)80080-4

    Article  CAS  Google Scholar 

  89. Ghadbeigi, L., Szendrei, A., Moreno, P., et al.: Synthesis of iron-doped Na-β″–alumina + yttria-stabilized zirconia composite electrolytes by a vapor phase process. Solid State Ion. 290, 77–82 (2016). https://doi.org/10.1016/j.ssi.2016.04.006

    Article  CAS  Google Scholar 

  90. Viswanathan, L., Ikuma, Y., Virkar, A.V.: Transfomation toughening of β″-alumina by incorporation of zirconia. J. Mater. Sci. 18, 109–113 (1983). https://doi.org/10.1007/BF00543815

    Article  CAS  Google Scholar 

  91. Liu, Z.H., Chen, J.J., Wang, X.X., et al.: Synthesis and characterization of high ionic-conductive sodium beta-alumina solid electrolyte derived from boehmite. J. Mater. Sci. Mater. Electron. 31, 17670–17678 (2020). https://doi.org/10.1007/s10854-020-04321-7

    Article  CAS  Google Scholar 

  92. Li, H., Fan, H.Q., Chen, G.Y., et al.: Performance of nano-3YSZ toughened β’’-alumina solid electrolyte prepared by EDTA-Zr(IV)/Y(III) complex as surface modifier. J. Alloys Compd. 817, 152717 (2020). https://doi.org/10.1016/j.jallcom.2019.152717

    Article  CAS  Google Scholar 

  93. Park, R.J.Y., Eschler, C.M., Fincher, C.D., et al.: Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries. Nat. Energy 6, 314–322 (2021). https://doi.org/10.1038/s41560-021-00786-w

    Article  CAS  Google Scholar 

  94. Spencer Jolly, D., Ning, Z.Y., Darnbrough, J.E., et al.: Sodium/Na β″ alumina interface: effect of pressure on voids. ACS Appl. Mater. Interfaces 12, 678–685 (2020). https://doi.org/10.1021/acsami.9b17786

    Article  CAS  PubMed  Google Scholar 

  95. Lei, D.N., He, Y.B., Huang, H.J., et al.: Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 10, 4244 (2019). https://doi.org/10.1038/s41467-019-11960-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Medenbach, L., Hartmann, P., Janek, J., et al.: A sodium polysulfide battery with liquid/solid electrolyte: improving sulfur utilization using P2S5 as additive and tetramethylurea as catholyte solvent. Energy Technol. 8, 1901200 (2020). https://doi.org/10.1002/ente.201901200

    Article  CAS  Google Scholar 

  97. Wang, D., Hwang, J., Chen, C.Y., et al.: A β″-alumina/inorganic ionic liquid dual electrolyte for intermediate-temperature sodium–sulfur batteries. Adv. Funct. Mater. 31, 2105524 (2021). https://doi.org/10.1002/adfm.202105524

    Article  CAS  Google Scholar 

  98. Goodenough, J.B., Hong, H.Y.P., Kafalas, J.A.: Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976). https://doi.org/10.1016/0025-5408(76)90077-5

    Article  CAS  Google Scholar 

  99. Hong, H.Y.P.: Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 11, 173–182 (1976). https://doi.org/10.1016/0025-5408(76)90073-8

    Article  CAS  Google Scholar 

  100. Zhang, Z.Z., Zou, Z.Y., Kaup, K., et al.: Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes. Adv. Energy Mater. 9, 1902373 (2019). https://doi.org/10.1002/aenm.201902373

    Article  CAS  Google Scholar 

  101. Benabed, Y., Rioux, M., Rousselot, S., et al.: Assessing the electrochemical stability window of NASICON-type solid electrolytes. Front. Energy Res. 9, 682008 (2021). https://doi.org/10.3389/fenrg.2021.682008

    Article  Google Scholar 

  102. Schwietert, T.K., Arszelewska, V.A., Wang, C., et al.: Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020). https://doi.org/10.1038/s41563-019-0576-0

    Article  CAS  PubMed  Google Scholar 

  103. Yang, Z.D., Tang, B., Xie, Z.J., et al.: NASICON-type Na3Zr2Si2PO12 solid-state electrolytes for sodium batteries. ChemElectroChem 8, 1035–1047 (2021). https://doi.org/10.1002/celc.202001527

    Article  CAS  Google Scholar 

  104. Sun, F., Xiang, Y.X., Sun, Q., et al.: Origin of high ionic conductivity of Sc-doped sodium-rich NASICON solid-state electrolytes. Adv. Funct. Mater. 31, 2102129 (2021). https://doi.org/10.1002/adfm.202102129

    Article  CAS  Google Scholar 

  105. Zhang, Z.Z., Zhang, Q.H., Shi, J.N., et al.: A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv. Energy Mater. 7, 1601196 (2017). https://doi.org/10.1002/aenm.201601196

    Article  CAS  Google Scholar 

  106. Martínez-Cisneros, C.S., Pandit, B., Antonelli, C., et al.: Development of sodium hybrid quasi-solid electrolytes based on porous NASICON and ionic liquids. J. Eur. Ceram. Soc. 41, 7723–7733 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.08.001

    Article  CAS  Google Scholar 

  107. Park, K.H., Bai, Q., Kim, D.H., et al.: Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 8, 1800035 (2018). https://doi.org/10.1002/aenm.201800035

    Article  CAS  Google Scholar 

  108. Jansen, M., Henseler, U.: Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate. J. Solid State Chem. 99, 110–119 (1992). https://doi.org/10.1016/0022-4596(92)90295-7

    Article  CAS  Google Scholar 

  109. Hayashi, A., Noi, K., Sakuda, A., et al.: Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012). https://doi.org/10.1038/ncomms1843

    Article  CAS  PubMed  Google Scholar 

  110. Moon, C.K., Lee, H.J., Park, K.H., et al.: Vacancy-driven Na+ superionic conduction in new Ca-doped Na3PS4 for all-solid-state Na-ion batteries. ACS Energy Lett. 3, 2504–2512 (2018). https://doi.org/10.1021/acsenergylett.8b01479

    Article  CAS  Google Scholar 

  111. Feng, X.Y., Chien, P.H., Zhu, Z.Y., et al.: Studies of functional defects for fast Na-ion conduction in Na3–yPS4–xClx with a combined experimental and computational approach. Adv. Funct. Mater. 29, 1807951 (2019). https://doi.org/10.1002/adfm.201807951

    Article  CAS  Google Scholar 

  112. Han, F.D., Zhu, Y.Z., He, X.F., et al.: Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016). https://doi.org/10.1002/aenm.201501590

    Article  CAS  Google Scholar 

  113. Wang, H., Chen, Y., Hood, Z.D., et al.: An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure. Angew. Chem. Int. Ed. 55, 8551–8555 (2016). https://doi.org/10.1002/anie.201601546

    Article  CAS  Google Scholar 

  114. Gamo, H., Phuc, N.H.H., Matsuda, R., et al.: Multiphase Na3SbS4 with high ionic conductivity. Mater. Today Energy 13, 45–49 (2019). https://doi.org/10.1016/j.mtener.2019.04.012

    Article  Google Scholar 

  115. Yubuchi, S., Ito, A., Masuzawa, N., et al.: Aqueous solution synthesis of Na3SbS4–Na2WS4 superionic conductors. J. Mater. Chem. A 8, 1947–1954 (2020). https://doi.org/10.1039/c9ta02246e

    Article  CAS  Google Scholar 

  116. Tsuji, F., Masuzawa, N., Sakuda, A., et al.: Preparation and characterization of cation-substituted Na3SbS4 solid electrolytes. ACS Appl. Energy Mater. 3, 11706–11712 (2020). https://doi.org/10.1021/acsaem.0c01823

    Article  CAS  Google Scholar 

  117. Banerjee, A., Park, K.H., Heo, J.W., et al.: Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem. 128, 9786–9790 (2016). https://doi.org/10.1002/ange.201604158

    Article  Google Scholar 

  118. Tian, Y.S., Sun, Y.Z., Hannah, D.C., et al.: Reactivity-guided interface design in Na metal solid-state batteries. Joule 3, 1037–1050 (2019). https://doi.org/10.1016/j.joule.2018.12.019

    Article  CAS  Google Scholar 

  119. Matsuo, M., Kuromoto, S., Sato, T., et al.: Sodium ionic conduction in complex hydrides with [BH4] and [NH2] anions. Appl. Phys. Lett. 100, 203904 (2012). https://doi.org/10.1063/1.4716021

    Article  CAS  Google Scholar 

  120. Tang, W.S., Yoshida, K., Soloninin, A.V., et al.: Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts. ACS Energy Lett. 1, 659–664 (2016). https://doi.org/10.1021/acsenergylett.6b00310

    Article  CAS  Google Scholar 

  121. Sun, Y.L., Wang, Y.C., Liang, X.M., et al.: Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4. J. Am. Chem. Soc. 141, 5640–5644 (2019). https://doi.org/10.1021/jacs.9b01746

    Article  CAS  PubMed  Google Scholar 

  122. Duchêne, L., Remhof, A., Hagemann, H., et al.: Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Mater. 25, 782–794 (2020). https://doi.org/10.1016/j.ensm.2019.08.032

    Article  Google Scholar 

  123. Yoon, K., Kim, J.J., Seong, W.M., et al.: Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery. Sci. Rep. 8, 8066 (2018). https://doi.org/10.1038/s41598-018-26101-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Agrawal, R.C., Pandey, G.P.: Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J. Phys. D Appl. Phys. 41, 223001 (2008). https://doi.org/10.1088/0022-3727/41/22/223001

    Article  CAS  Google Scholar 

  125. Long, L.Z., Wang, S.J., Xiao, M., et al.: Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016). https://doi.org/10.1039/c6ta02621d

    Article  CAS  Google Scholar 

  126. Wright, P.V.: Electrical conductivity in ionic complexes of poly(ethylene oxide). Brit. Polym. J. 7, 319–327 (1975). https://doi.org/10.1002/pi.4980070505

    Article  CAS  Google Scholar 

  127. Xue, Z.G., He, D., Xie, X.L.: Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015). https://doi.org/10.1039/c5ta03471j

    Article  CAS  Google Scholar 

  128. Devi, C., Gellanki, J., Pettersson, H., et al.: High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Sci. Rep. 11, 20180 (2021). https://doi.org/10.1038/s41598-021-99663-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Guo, B., Fu, Y.D., Wang, J.N., et al.: Strategies and characterization methods for achieving high performance PEO-based solid-state lithium-ion batteries. Chem. Commun. 58, 8182–8193 (2022). https://doi.org/10.1039/d2cc02306g

    Article  CAS  Google Scholar 

  130. Shenbagavalli, S., Muthuvinayagam, M., Jayanthi, S., et al.: Investigations on Al2O3 dispersed PEO/PVP based Na+ ion conducting blend polymer electrolytes. J. Mater. Sci. Mater. Electron. 32, 9998–10007 (2021). https://doi.org/10.1007/s10854-021-05658-3

    Article  CAS  Google Scholar 

  131. Yao, Y.W., Liu, Z.H., Wang, X.X., et al.: Promoted ion conductivity of sodium salt–poly(ethylene oxide) polymer electrolyte induced by adding conductive beta-alumina and application in all-solid-state sodium batteries. J. Mater. Sci. 56, 9951–9960 (2021). https://doi.org/10.1007/s10853-021-05885-3

    Article  CAS  Google Scholar 

  132. Chen, G.H., Bai, Y., Gao, Y.S., et al.: Inhibition of crystallization of poly(ethylene oxide) by ionic liquid: insight into plasticizing mechanism and application for solid-state sodium ion batteries. ACS Appl. Mater. Interfaces 11, 43252–43260 (2019). https://doi.org/10.1021/acsami.9b16294

    Article  CAS  PubMed  Google Scholar 

  133. Hulvat, J.F., Stupp, S.I.: Liquid-crystal templating of conducting polymers. Angew. Chem. Int. Ed. 42, 778–781 (2003). https://doi.org/10.1002/anie.200390206

    Article  CAS  Google Scholar 

  134. Koduru, H.K., Marinov, Y.G., Hadjichristov, G.B., et al.: Characterization of polymer/liquid crystal composite based electrolyte membranes for sodium ion battery applications. Solid State Ion. 335, 86–96 (2019). https://doi.org/10.1016/j.ssi.2019.02.021

    Article  CAS  Google Scholar 

  135. Park, S.S., Tulchinsky, Y., Dincă, M.: Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu–azolate metal–organic framework. J. Am. Chem. Soc. 139, 13260–13263 (2017). https://doi.org/10.1021/jacs.7b06197

    Article  CAS  PubMed  Google Scholar 

  136. Wei, T., Wang, Z.M., Zhang, Q., et al.: Metal–organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: a review. CrystEngComm 24, 5014–5030 (2022). https://doi.org/10.1039/d2ce00663d

    Article  CAS  Google Scholar 

  137. Ge, Z., Li, J., Liu, J.: Enhanced electrochemical performance of all-solid-state sodium-sulfur batteries by PEO–NaCF3SO3–MIL-53(Al) solid electrolyte. Ionics 26, 1787–1795 (2020). https://doi.org/10.1007/s11581-020-03513-9

    Article  CAS  Google Scholar 

  138. Svarfvar, B.L., Ekman, K.B., Sundell, M.J., et al.: Electron-beam graft-modified membranes with externally controlled flux. Polym. Adv. Technol. 7, 839–846 (1996). https://doi.org/10.1002/(sici)1099-1581(199611)7:11839:aid-pat592%3e3.0.co;2-t

    Article  CAS  Google Scholar 

  139. Bristi, A.A., Samson, A.J., Sivakumaran, A., et al.: Ionic conductivity, Na plating–stripping, and battery performance of solid polymer Na ion electrolyte based on poly(vinylidene fluoride) and poly(vinyl pyrrolidone). ACS Appl. Energy Mater. 5, 8812–8822 (2022). https://doi.org/10.1021/acsaem.2c01296

    Article  CAS  Google Scholar 

  140. Bag, S., Zhou, C.T., Reid, S., et al.: Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte. J. Power Sources 454, 227954 (2020). https://doi.org/10.1016/j.jpowsour.2020.227954

    Article  CAS  Google Scholar 

  141. Wang, X.E., Zhu, H.J., Greene, G.W., et al.: Enhancement of ion dynamics in organic ionic plastic crystal/PVDF composite electrolytes prepared by co-electrospinning. J. Mater. Chem. A 4, 9873–9880 (2016). https://doi.org/10.1039/c6ta02817a

    Article  CAS  Google Scholar 

  142. Makhlooghiazad, F., Nti, F., Sun, J., et al.: Composite electrolytes based on electrospun PVDF and ionic plastic crystal matrices for Na-metal battery applications. J. Phys. Mater. 4, 034003 (2021). https://doi.org/10.1088/2515-7639/abeed2

    Article  CAS  Google Scholar 

  143. Fang, R.Y., Li, Y.T., Wu, N., et al.: Ultra-thin single-particle-layer sodium beta-alumina-based composite polymer electrolyte membrane for sodium-metal batteries. Adv. Funct. Mater. 33, 2211229 (2023). https://doi.org/10.1002/adfm.202211229

    Article  CAS  Google Scholar 

  144. Shetty, S.K., Ismayil, Nasreen, et al.: Sodium ion conducting PVA/NaCMC bio poly-blend electrolyte films for energy storage device applications. Int. J. Polym. Anal. Charact. 26, 411–424 (2021). https://doi.org/10.1080/1023666x.2021.1899685

    Article  CAS  Google Scholar 

  145. Cyriac, V., Ismayil, Noor, I.S.B.M., et al.: Modification in the microstructure of sodium carboxymethylcellulose/polyvinyl alcohol polyblend films through the incorporation of NaNO3 for energy storage applications. Int. J. Energy Res. 46, 22845–22866 (2022). https://doi.org/10.1002/er.8588

    Article  CAS  Google Scholar 

  146. Yu, X.W., Xue, L.G., Goodenough, J.B., et al.: All-solid-state sodium batteries with a polyethylene glycol diacrylate–Na3Zr2Si2PO12 composite electrolyte. Adv. Energy Sustain. Res. 2, 2000061 (2021). https://doi.org/10.1002/aesr.202000061

    Article  CAS  Google Scholar 

  147. Ren, Y.X., Hortance, N., McBride, J., et al.: Sodium-sulfur batteries enabled by a protected inorganic/organic hybrid solid electrolyte. ACS Energy Lett. 6, 345–353 (2021). https://doi.org/10.1021/acsenergylett.0c02494

    Article  CAS  Google Scholar 

  148. Batten, S.R., Champness, N.R., Chen, X.M., et al.: Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1715–1724 (2013). https://doi.org/10.1351/pac-rec-12-11-20

    Article  CAS  Google Scholar 

  149. Gebert, F., Knott, J., Gorkin, R., et al.: Polymer electrolytes for sodium-ion batteries. Energy Storage Mater. 36, 10–30 (2021). https://doi.org/10.1016/j.ensm.2020.11.030

    Article  Google Scholar 

  150. Menisha, M., Senavirathna, S.L.N., Vignarooban, K., et al.: Synthesis, electrochemical and optical studies of poly(ethylene oxide) based gel-polymer electrolytes for sodium-ion secondary batteries. Solid State Ion. 371, 115755 (2021). https://doi.org/10.1016/j.ssi.2021.115755

    Article  CAS  Google Scholar 

  151. Feuillade, G., Perche, P.: Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem. 5, 63–69 (1975). https://doi.org/10.1007/BF00625960

    Article  CAS  Google Scholar 

  152. Yu, Q.P., Lu, Q.W., Qi, X.G., et al.: Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anodes. Energy Storage Mater. 23, 610–616 (2019). https://doi.org/10.1016/j.ensm.2019.03.011

    Article  Google Scholar 

  153. Choi, N.S., Lee, Y.G., Park, J.K., et al.: Preparation and electrochemcial characteristics of plasticized polymer electrolytes based upon a P(VdF-co-HFP)/PVAc blend. Electrochim. Acta 46, 1581–1586 (2001). https://doi.org/10.1016/S0013-4686(00)00756-8

    Article  CAS  Google Scholar 

  154. Vo, D.T., Do, H.N., Nguyen, T.T., et al.: Sodium ion conducting gel polymer electrolyte using poly(vinylidene fluoride hexafluoropropylene). Mater. Sci. Eng. B 241, 27–35 (2019). https://doi.org/10.1016/j.mseb.2019.02.007

    Article  CAS  Google Scholar 

  155. Janakiraman, S., Agrawal, A., Biswal, R., et al.: An amorphous polyvinylidene fluoride-co-hexafluoropropylene based gel polymer electrolyte for sodium-ion cells. Appl. Surf. Sci. Adv. 6, 100139 (2021). https://doi.org/10.1016/j.apsadv.2021.100139

    Article  Google Scholar 

  156. Chauhan, A.K., Kumar, D., Mishra, K., et al.: Performance enhancement of Na+ ion conducting porous gel polymer electrolyte using NaAlO2 active filler. Mater. Today Commun. 26, 101713 (2021). https://doi.org/10.1016/j.mtcomm.2020.101713

    Article  CAS  Google Scholar 

  157. Kwon, D.S., Gong, S.H., Yun, S., et al.: Regulating Na electrodeposition by sodiophilic grafting onto porosity-gradient gel polymer electrolytes for dendrite-free sodium metal batteries. ACS Appl. Mater. Interfaces 14, 47650–47658 (2022). https://doi.org/10.1021/acsami.2c12287

    Article  CAS  PubMed  Google Scholar 

  158. Zhao, C.D., Guo, J.Z., Gu, Z.Y., et al.: Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Res. 15, 925–932 (2022). https://doi.org/10.1007/s12274-021-3577-7

    Article  CAS  Google Scholar 

  159. Shubha, N., Prasanth, R., Hng, H.H., et al.: Study on effect of poly (ethylene oxide) addition and in-situ porosity generation on poly (vinylidene fluoride)-glass ceramic composite membranes for lithium polymer batteries. J. Power Sources 267, 48–57 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.074

    Article  CAS  Google Scholar 

  160. Zhang, Y.G., Bakenov, Z., Tan, T.Z., et al.: Polyacrylonitrile-nanofiber-based gel polymer electrolyte for novel aqueous sodium-ion battery based on a Na4Mn9O18 cathode and Zn metal anode. Polymers 10, 853 (2018). https://doi.org/10.3390/polym10080853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lonchakova, O.V., Semenikhin, O.A., Zakharkin, M.V., et al.: Efficient gel-polymer electrolyte for sodium-ion batteries based on poly(acrylonitrile-co-methyl acrylate). Electrochim. Acta 334, 135512 (2020). https://doi.org/10.1016/j.electacta.2019.135512

    Article  CAS  Google Scholar 

  162. Zhou, Y.N., Xiao, Z.C., Han, D.Z., et al.: Approaching practically accessible and environmentally adaptive sodium metal batteries with high loading cathodes through in situ interlock interface. Adv. Funct. Mater. 32, 2111314 (2022). https://doi.org/10.1002/adfm.202111314

    Article  CAS  Google Scholar 

  163. Shuai, Y., Lou, J., Pei, X.L., et al.: Constructing an in situ polymer electrolyte and a Na-rich artificial SEI layer toward practical solid-state Na metal batteries. ACS Appl. Mater. Interfaces 14, 45382–45391 (2022). https://doi.org/10.1021/acsami.2c12518

    Article  CAS  PubMed  Google Scholar 

  164. Gandini, A.: Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41, 9491–9504 (2008). https://doi.org/10.1021/ma801735u

    Article  CAS  Google Scholar 

  165. Mittal, N., Ojanguren, A., Cavasin, N., et al.: Transient rechargeable battery with a high lithium transport number cellulosic separator. Adv. Funct. Mater. 31, 2101827 (2021). https://doi.org/10.1002/adfm.202101827

    Article  CAS  Google Scholar 

  166. Mittal, N., Tien, S.A., Lizundia, E., et al.: Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries. Small 18, 2107183 (2022). https://doi.org/10.1002/smll.202107183

    Article  CAS  Google Scholar 

  167. Yang, Z.G., Zhang, J.L., Kintner-Meyer, M.C.W., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). https://doi.org/10.1021/cr100290v

    Article  CAS  PubMed  Google Scholar 

  168. Simari, C., Tuccillo, M., Brutti, S., et al.: Sodiated Nafion membranes for sodium metal aprotic batteries. Electrochim. Acta 410, 139936 (2022). https://doi.org/10.1016/j.electacta.2022.139936

    Article  CAS  Google Scholar 

  169. Abouimrane, A., Whitfield, P.S., Niketic, S., et al.: Investigation of Li salt doped succinonitrile as potential solid electrolytes for lithium batteries. J. Power Sources 174, 883–888 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.103

    Article  CAS  Google Scholar 

  170. Kim, S.H., Choi, K.H., Cho, S.J., et al.: A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries. J. Mater. Chem. A 2, 10854–10861 (2014). https://doi.org/10.1039/c4ta00494a

    Article  CAS  Google Scholar 

  171. Abu-Lebdeh, Y., Abouimrane, A., Alarco, P.J., et al.: Ambient temperature proton conducting plastic crystal electrolytes. Electrochem. Commun. 6, 432–434 (2004). https://doi.org/10.1016/j.elecom.2004.02.015

    Article  CAS  Google Scholar 

  172. Long, S.: Fast ion conduction in molecular plastic crystals. Solid State Ion. 161, 105–112 (2003). https://doi.org/10.1016/s0167-2738(03)00208-x

    Article  CAS  Google Scholar 

  173. Zhu, X.M., Zhao, R.R., Deng, W.W., et al.: An all-solid-state and all-organic sodium-ion battery based on redox-active polymers and plastic crystal electrolyte. Electrochim. Acta 178, 55–59 (2015). https://doi.org/10.1016/j.electacta.2015.07.163

    Article  CAS  Google Scholar 

  174. Yu, X.W., Xue, L.G., Goodenough, J.B., et al.: Ambient-temperature all-solid-state sodium batteries with a laminated composite electrolyte. Adv. Funct. Mater. 31, 2002144 (2021). https://doi.org/10.1002/adfm.202002144

    Article  CAS  Google Scholar 

  175. Makhlooghiazad, F., Gunzelmann, D., Hilder, M., et al.: Mixed phase solid-state plastic crystal electrolytes based on a phosphonium cation for sodium devices. Adv. Energy Mater. 7, 1601272 (2017). https://doi.org/10.1002/aenm.201601272

    Article  CAS  Google Scholar 

  176. Biernacka, K., Makhlooghiazad, F., Popov, I., et al.: Investigation of unusual conductivity behavior and ion dynamics in hexamethylguanidinium bis(fluorosulfonyl)imide-based electrolytes for sodium batteries. J. Phys. Chem. C 125, 12518–12530 (2021). https://doi.org/10.1021/acs.jpcc.1c01777

    Article  CAS  Google Scholar 

  177. Makhlooghiazad, F., Sharma, M., Zhang, Z.Z., et al.: Stable high-temperature cycling of Na metal batteries on Na3V2(PO4)3 and Na2FeP2O7 cathodes in NaFSI-rich organic ionic plastic crystal electrolytes. J. Phys. Chem. Lett. 11, 2092–2100 (2020). https://doi.org/10.1021/acs.jpclett.0c00149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (22005190, 21938005), the Science & Technology Commission of Shanghai Municipality (20QB1405700, 19DZ1205500), and the Zhejiang Key Research and Development Program (2020C01128).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiying Che or Zi-Feng Ma.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Che, H., Chen, S. et al. Research Progress on the Solid Electrolyte of Solid-State Sodium-Ion Batteries. Electrochem. Energy Rev. 7, 3 (2024). https://doi.org/10.1007/s41918-023-00196-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-023-00196-4

Keywords

Navigation