Skip to main content
Log in

The Effects of Low Doses of Gamma-Radiation on Growth and Membrane Activity of Pseudomonas aeruginosa GRP3 and Escherichia coli M17

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Microorganisms are part of the natural environments and reflect the effects of different physical factors of surrounding environment, such as gamma (γ) radiation. This work was devoted to the study of the influence of low doses of γ radiation with the intensity of 2.56 μW (m2 s)−1 (absorbed doses were 3.8 mGy for the radiation of 15 min and 7.2 mGy—for 30 min) on Escherichia coli M-17 and Pseudomonas aeruginosa GRP3 wild type cells. The changes of bacterial, growth, survival, morphology, and membrane activity had been studied after γ irradiation. Verified microbiological (specific growth rate, lag phase duration, colony-forming units (CFU) number, and light microscopy digital image analysis), biochemical (ATPase activity of bacterial membrane vesicles), and biophysical (H+ fluxes throughout cytoplasmic membrane of bacteria) methods were used for assessment of radiation implications on bacteria. It was shown that growth specific rate, lag phase duration and CFU number of these bacteria were lowered after irradiation, and average cell surface area was decreased too. Moreover ion fluxes of bacteria were changed: for P. aeruginosa they were decreased and for E. coli—increased. The N,N′-dicyclohexylcarbodiimide (DCCD) sensitive fluxes were also changed which were indicative for the membrane-associated F0F1-ATPase enzyme. ATPase activity of irradiated membrane vesicles was decreased for P. aeruginosa and stimulated for E. coli. Furthermore, DCCD sensitive ATPase activity was also changed. The results obtained suggest that these bacteria especially, P. aeruginosa are sensitive to γ radiation and might be used for developing new monitoring methods for estimating environmental changes after γ irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Confalonieri, F., & Sommer, S. (2011). Bacterial and archaeal resistance to ionizing radiation. Journal of Physics, 261, 012005.

    Google Scholar 

  2. Abo-State, M. A., El-Gamal, M. S., El-Danasory, A., & Mabrouk, M. A. (2014). Radio-impact of gamma radiation on pathogenic bacterial strains isolated from rosetta branch and its drains of river nile water. Middle-East Journal of Scientific Research, 21, 776–781.

    Google Scholar 

  3. Romanovskaia, V. A., Rokitko, P. V., Mikheev, A. N., Gushcha, N. I., Malashenko, I. R., & Chernaia, N. A. (2002). The effect of gamma-radiation and desiccation on the viability of the soil bacteria isolated from the alienated zone around the Chernobyl nuclear power plant. Microbiology, 71, 705–712.

    CAS  PubMed  Google Scholar 

  4. Min, J., Lee, C. W., & Gu, M. B. (2003). Gamma-radiation dose-rate effects on DNA damage and toxicity in bacterial cells. Radiation and Environmental Biophysics, 42, 189–192.

    Article  PubMed  Google Scholar 

  5. Soghomonyan, D., Trchounian, K., & Trchounian, A. (2016). Millimeter waves or extremely high frequency electromagnetic fields in the environment: What are their effects on bacteria? Applied Microbiology and Biotechnology, 100, 4761–71.

    Article  CAS  PubMed  Google Scholar 

  6. Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2, a000414.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Storz, G., & Hengge, R. (2011). Bacterial stress responses. Washington: ASM Press.

    Google Scholar 

  8. Agrawal, A., & Kale, R. (2014). Radiation induced peroxidative damage: Mechanism and significance. Middle-East Journal of Scientific Research, 21(5), 776–781.

    Google Scholar 

  9. Abo-State, M. A. M., Helmish, F. A., Husseiny, S. M., & Zickry, A. R. A. (2012). Reduction of health hazard of Bacillus species contaminating solution lenses and baby powder by imipenem and gamma radiation. World Applied Sciences Journal, 19, 856–866.

    CAS  Google Scholar 

  10. Umender, K. S., & Dipankar, C. (2010). Transcriptional switching in Escherichia coli during stress and starvation by modulation of σ70 activity. FEMS Microbiology Reviews, 34, 646–657.

    Article  Google Scholar 

  11. Wood, L. F., & Ohman, D. E. (2015). Cell wall stress activates expression of a novel stress response facilitator (SrfA) under σ22 (AlgT/U) control in Pseudomonas aeruginosa. Microbiology, 161, 30–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Capra, E. J., & Laub, M. T. (2012). Evolution of two-component signal transduction systems. Annual Review of Microbiology, 66, 325–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davis, M. C., Kesthely, C. A., Franklin, E. A., & MacLellan, S. R. (2016). The essential activities of the bacterial sigma factor. Canadian Journal of Microbiology, 63, 89–99.

    Article  PubMed  Google Scholar 

  14. Bouffartigues, E., Gicquel, G., Bazire, A., Bains, M., Maillot, O., Vieillard, J., Feuilloley, M. G. J., Orange, N., Hancock, R. E. W., Dufour, A., & Chevaliera, S. (2012). Transcription of the oprF gene of Pseudomonas aeruginosa is dependent mainly on the sigma factor and is sucrose induced. Journal of Bacteriology, 194, 4301–4311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caillet, S., Millette, M., Dussault, D., Shareck, F., & Lacroix, M. (2008). Effect of gamma radiation on heat shock protein expression of four foodborne pathogens. Journal of Applied Microbiology, 105, 1384–1391.

    Article  CAS  PubMed  Google Scholar 

  16. Daly, M. J., Gaidamakova, E. K., Matrosova, V. Y., Vasilenko, A., Zhai, M., Venkateswaran, A., Hess, M., Omelchenko, M. V., Kostandarithes, H. M., Makarova, K. S., Wackett, L. P., Fredrickson, J. K., & Ghosal, D. (2004). Accumulation of Mn (II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science, 306, 925–1084.

    Article  Google Scholar 

  17. Daly, M. J., Gaidamakova, E. K., Matrosova, V. Y., Vasilenko, A., Zhai, M., Leapman, R. D., Lai, B., Ravel, B., Li Sh, W., Kemner, K. M., & Fredrickson, J. K. (2007). Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biology, 5, 769–779.

    Article  CAS  Google Scholar 

  18. Nguyen, H. P., Pham, V. T. H., Nguyen, S. H., Baulin, V., Croft, R. J., Phillips, B., Crawford, R. J., & Ivanova, E. P. (2016). the bioeffects resulting from prokaryotic cells and yeast being exposed to an 18 GHz electromagnetic field. PLoS One, 11, 1–19.

    Google Scholar 

  19. Blbulyan, S., & Trchounian, A. (2015). Impact of membrane-associated hydrogenases on the FOF1-ATPase in Escherichia coli during glycerol and mixed carbon fermentation: ATPase activity and its inhibition by N,N -dicyclohexylcarbodiimide in the mutants lacking hydrogenases. Archives of Biochemistry and Biophysics, 579, 67–72.

    Article  CAS  PubMed  Google Scholar 

  20. Soghomonyan, D. (2013). The effects of low-intensity electromagnetic irradiation at the frequencies of 51.8 and 53 GHz and antibiotic ceftazidime on Lactobacillus acidophilus FoF1-ATP-ase activity. Biological Journal of Armenia, 65, 89–92.

    CAS  Google Scholar 

  21. Soghomonyan, D., & Trchounian, A. (2013). Comparable effects of low-intensity electromagnetic irradiation at the frequency of 51.8 and 53 GHz and antibiotic ceftazidime on Lactobacillus acidophilus growth and survival. Cell Biochemistry and Biophysics, 67, 829–835.

    Article  CAS  PubMed  Google Scholar 

  22. Margaryan, A., Badalyan, H., & Trchounian, A. (2016). Comparative analysis of UV irradiation effects on Escherichia coli and Pseudomonas aeruginosa bacterial cells utilizing biological and computational approaches. Cell Biochemistry and Biophysics, 74, 381–389.

    Article  CAS  PubMed  Google Scholar 

  23. Standards for protection against radiation—Part 20. US Nuclear Regulatory Commission. (2009), https://www.nrc.gov/reading-rm/doc-collections/cfr/part020/full-text.html.

  24. Mkrtchian, V. E., Badalyan, H. G., & Yayloyan, S. M. (2016). Deformation of the cross section of the surface of erythrocyte in the plane of mirror symmetry in the field of ionizing radiation. Armenian Journal of Physics, 9, 72–75.

    Google Scholar 

  25. Torgomyan, H., Tadevosyan, H., & Trchounian, A. (2011). Extremely high frequency electromagnetic irradiation in combination with antibiotics enhances antibacterial effects on Escherichia coli. Current Microbiology, 62, 962–967.

    Article  CAS  PubMed  Google Scholar 

  26. Massana, R., Gasol, J. M., Bjørnsen, P. K., Blackburn, N., Hagström, Å., Hietanen, S., Hygum, B. H., & Kuparinen (1997). Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Scientia Marina, 61, 397–407.

    Google Scholar 

  27. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2008). Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics. Cell Biochemsitry and Biophysics, 51, 97–103.

    Article  CAS  Google Scholar 

  28. Vardanyan, Z., Gevorkyan, V., Ananyan, M., Vardapetyan, H., & Trchounian, A. (2015). Effects of various heavy metal nanoparticles on Enterococcus hirae and Escherichia coli growth and proton-coupled membrane transport. Journal of Nanobiotechnology, 13, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Torgomyan, H., & Trchounian, A. (2013). Bactericidal effects of low-intensity extremely high frequency electromagnetic field: an overview with phenomenon, mechanisms, targets and consequences. Critical Reviews in Microbiology, 39, 102–111.

    Article  CAS  PubMed  Google Scholar 

  30. Torgomyan, H., Ohanyan, V., Blbulyan, S., Kalantaryan, V., & Trchounian, A. (2012). Electromagnetic irradiation of Enterococcus hirae at low-intensity 51.8 and 53.0 GHz frequencies: Changes in bacterial cell membrane properties and enhanced antibiotics effects. FEMS Microbiology Letters, 329, 131–137.

    Article  CAS  PubMed  Google Scholar 

  31. Young, K. D. (2006). The selective value of bacterial shape. Microbiology and Molecular Biology Reviews, 70, 660–703.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Torgomyan, H., & Trchounian, A. (2012). Escherichia coli membrane-associated energy-dependent processes and sensitivity toward antibiotics changes as responses to low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies. Cell Biochemistry and Biophysics, 62, 451–461.

    Article  CAS  PubMed  Google Scholar 

  33. Kirakosyan, G., Torgomyan, H., Malakyan, M., Bajinyan, S., & Trchounian, A. (2013). Protective effects of some amino acids synthesized derivatives and their chelates on Escherichia coli under X-ray irradiation. Indian Journal of Biochemistry & Biophysics, 50, 289–295.

    CAS  Google Scholar 

  34. Jordan, S., Hutchings, M. I., & Mascher, T. (2008). Cell envelope stress response in Gram-positive bacteria. FEMS Microbiology Reviews, 32, 107–146.

    Article  CAS  PubMed  Google Scholar 

  35. Tapias, A., Leplat, C., & Confalonieri, F. (2009). Recovery of ionizing-radiation damage after high doses of gamma ray in the hyperthermophilic archaeon Thermococcus gammatolerans. Extremophiles, 13, 333.

    Article  CAS  PubMed  Google Scholar 

  36. Rogers, K. R., Apostol, A., Madsen, S. J., & Spencer, C. W. (1999). Detection of low dose radiation induced dna damage using temperature differential fluorescence assay. Analytical Chemistry, 71, 4423–4426.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was done by Basic Support of State Committee of Science, Ministry of Education and Science of Armenia, and supported by International Science & Technology Center (ISTC) project (#A-2089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Trchounian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soghomonyan, D., Margaryan, A., Trchounian, K. et al. The Effects of Low Doses of Gamma-Radiation on Growth and Membrane Activity of Pseudomonas aeruginosa GRP3 and Escherichia coli M17. Cell Biochem Biophys 76, 209–217 (2018). https://doi.org/10.1007/s12013-017-0831-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-017-0831-4

Keywords

Navigation