Skip to main content
Log in

Influence of ultrahigh frequency irradiation on Photobacterium phosphoreum luxb gene expression

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Continuous increase in the number and the variety of anthropogenic sources of electromagnetic radiation causes a high interest in studying the effects ultrahigh frequency on living organisms. In the present research influence of UHF EMR (15 W, 2.45 GHz) for 5 and 15 min on morphological and genetic peculiarities of Photobacterium phosphoreum colonies was studied. It has been revealed that UHF EMR affected colony growth parameters, induced transcriptional activity of luciferase encoding gene expression and that the effect was depended on exposure duration. The subsequent cultivation of bacteria during a two week period after treatment showed maintaining of the increased luxb mRNA level in irradiated colonies. Opposite bacterial stress responses were detected to UHF EMR and elevated temperature treatments that assumed UHF EMR comprised of not only thermal but specific component of non-thermal nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ct:

threshold cycle

qRT-PCR:

quantitative reverse transcription PCR

UHF EMR:

ultrahigh frequency electromagnetic radiation

References

  1. Lacy-Hulbert A., Metcalfe J.C., Hesketh R., Biological responses to electromagnetic fields, FASEB J., 1998, 6, 395–420

    Google Scholar 

  2. Havas M., Biological effects of non-ionizing electromagnetic energy, Environ. Rev, 2000, 8, 173–253

    Article  CAS  Google Scholar 

  3. Hardell L., Sage C., Biological effects from electromagnetic field exposure and public exposure standards, Biomed. Pharmacother., 2008, 2, 104–109

    Article  Google Scholar 

  4. Valberg P.A., van Deventer T.E., Repacholi M.H., Workgroup report: base stations and wireless networks-radiofrequency (RF) exposures and health consequences, Environ. Health Perspect., 2007, 115, 416–424

    Article  PubMed Central  PubMed  Google Scholar 

  5. Nealson K.H., Hastings J.W., Bacterial bioluminescence: its control and ecological significance, Microbiol. Rev., 1979, 4, 406–518

    Google Scholar 

  6. Medvedeva S.E., Tyulkova N.A., Kuznetsov A.M., Rodicheva E. K., Bioluminescent bioassays based on luminous bacteria, J. Sib. Fed. Univ., 2009, 2, 418–452

    Google Scholar 

  7. Lee J.H., Gu M.B., An integrated mini biosensor system for continuous water toxicity monitoring, Biosens. Bioelectron., 2005, 20,1744–1749

    Article  CAS  PubMed  Google Scholar 

  8. Roda A., Guardigli M., Pasini P., Mirasoli M., Bioluminescence and chemiluminescence in drug screening, Anal. Bioanal. Chem., 2003, 377, 826–833

    Article  CAS  PubMed  Google Scholar 

  9. Tarasova, A.S., Stom D.I., Kudryasheva N.S., Bioluminescent toxicity monitoring of oxidizer solutions. Effect of humic substances, Environ. Toxicol. Chem., 2011, 30, 1013–1017

    Article  CAS  PubMed  Google Scholar 

  10. Alkorta I., Epelde L., Mijangos I., Amezaga I., Garbisu C., Bioluminescent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils, Rev Environ Health., 2006, 21, 139–152

    Article  CAS  PubMed  Google Scholar 

  11. Kratasyuk V.A., Esimbekova E.N., Gladyshev M.I., Khromichek E.B., Kuznetsov A.M., Ivanova E.A., The use of bioluminescent biotest for study of natural and laboratory aquatic ecosystems, Chemosphere, 2001, 42, 909–915

    Article  CAS  PubMed  Google Scholar 

  12. Kudryasheva N., Vetrova E., Kuznetsov A., Kratasyuk V., Stom D., Bioluminescence assays: effects of quinones and phenols, Ecotox. Environ. Safe., 2002, 53, 198–203

    Article  Google Scholar 

  13. Ren S., Frymier P.D., Toxicity of metals and organic chemicals evaluated with bioluminescence assays, Chemosphere, 2005, 58, 543–550

    Article  CAS  PubMed  Google Scholar 

  14. Ulitzur S., Natural Luminescent Whole-Cell Bioreporters, In: Marks R.S., Cullen D.C., Karube I., Lowe C.R., Weetall H.H. (Eds.), Handbook of Biosensors and Biochip, Wiley-Interscience, 2007

    Google Scholar 

  15. Escher A., O’Kane D.J., Szalay A.A., The β subunit polypeptide of Vibrio harveyi luciferase determines light emission at 42°C, Mol. Gen. Genet., 1991, 230, 385–393

    Article  CAS  PubMed  Google Scholar 

  16. Meighen E.A., Genetics of bacterial bioluminescence, Annu. Rev. Genet., 1994, 28, 117–139

    Article  CAS  PubMed  Google Scholar 

  17. Gretsky I.A., Investigation of physiological features of luminous bacteria Photobacterium phosphoreum IMV B-7071// Mikrobiol. Z., 2014, 76, 42–47, (in Russian)

    Google Scholar 

  18. Zarubina A. P., Gapochka M. G., Novoselova L. A., Gapochka L. D., Effect of low intensity electromagnetic radiation on the toxicity of domestic wastewater tested with the “Ecolum” testsystem, Moscow University Biological Sciences Bulletin, 2013, 68, 49–52

    Article  Google Scholar 

  19. Gitelson I.I., Rodicheva E.K., Medvedeva S.E., et al., Luminescent bacteria, Novosibirsk, Nauka, 1984, (in Russian)

    Google Scholar 

  20. Maligina V.Yu., Katsev A.M., Luminous bacteria from the Black sea and the Sea of Azov, Ekologiya Morya, 2003, 64, 18–23, (in Russian)

    Google Scholar 

  21. Safronova L.A., Zelena L.B., Klochko V.V., Reva O.N., Does the applicability of Bacillus strains in probiotics rely upon their taxonomy? Can. J. Microbiol., 2012, 58, 212–219

    Article  CAS  PubMed  Google Scholar 

  22. Kuts V.V., Ismailov A.D., Physiological and emission characteristics of the luminescent bacterium Photobacterium phosphoreum from the White Sea, Microbiol., 2009, 5, 554–558

    Article  Google Scholar 

  23. Pirt S.J., A kinetic study of the mode of growth of surface colonies of bacteria and fungi, Microbiol., 1967, 2, 181–197

    Google Scholar 

  24. Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 2001, 25, 402–408

    Article  CAS  PubMed  Google Scholar 

  25. Czyz A., Plata K., Wegrzyn G., Induction of light emission by luminescent bacteria treated with UV light and chemical mutagens, J. Appl. Genet., 2002, 43, 377–389

    PubMed  Google Scholar 

  26. Ramaiah N., Chandramohan D., Ecological and laboratory studies on the role of luminous bacteria and their luminescence in coastal pollution surveillance, Mar. Pollut. Bull., 1993, 26, 191–201

    Article  Google Scholar 

  27. Li M., Wang J., Lin H., The effect of Hg2+ on the bioluminescence of Photobacterium leiognathi, Luminescence, 2013, 28, 368–371

    Article  CAS  PubMed  Google Scholar 

  28. Ron E.Z., Bacterial stress response, In: DeLong E.F., Lory S., Stackebrandt E., Thompson F. (Eds.), The Prokaryotes. Prokaryotic Physiology and Biochemistry, 4th ed., Springer-Verlag Berlin Heidelberg, 2013

    Google Scholar 

  29. Dunlap P.V., Quorum regulation of luminescence in Vibrio fisheri, J. Mol. Microbiol. Biotechnol., 1999, 1, 5–12

    CAS  PubMed  Google Scholar 

  30. Belyaev I.Y., Shcheglov V.S., Alipov E.D., Ushalov V.D., Nonthermal effects of extremely high-frequency microwaves on chromatin conformation in cells in vitro — Dependence on physical, physiological, and genetic factors, IEEE Trans. Microw. Theory Tech., 2000, 48, 2172–2179

    Article  CAS  Google Scholar 

  31. Shcheglov V.S., Alipov E.D., Belyaev I.Y., Cellto-cell communication in response of E. coli cells at different phases of growth to low-intensity microwaves, Biochim. Biophys. Acta, 2002, 1572, 101–106

    Article  CAS  PubMed  Google Scholar 

  32. Pooley D.T., Bacterial bioluminescence, bioelectromagnetics and function, Photochem. Photobiol., 2011, 87, 324–328

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Gretsky.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelena, L., Gretsky, I. & Gromozova, E. Influence of ultrahigh frequency irradiation on Photobacterium phosphoreum luxb gene expression. cent.eur.j.biol. 9, 1004–1010 (2014). https://doi.org/10.2478/s11535-014-0347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0347-5

Keywords

Navigation