Skip to main content

Features of the Effect of VUV Radiation on Microfungi from Polar Regions

  • Conference paper
  • First Online:
Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

In this work, the effect of VUV radiation of the wavelength region Δλ = 166–180 nm on microscopic fungi propagules Cladosporium herbarum, Rhodotorula colostri, Saccharomyces cerevisiae was studied. In the course of the work, dependencies of the survival probability of propagules, which were at the exponential and stationary phases of development, on radiation doses were obtained. It was found that at the exponential stage of colonies development, the survival curves of propagules of different types of micromycetes coincide within the limits of error, but at the stationary phase they are different. IR spectroscopy and atomic force microscopy of irradiated propagules indicate a change in their cell wall. Electrophoresis of DNA molecules of irradiated propagules proves double-stranded breaks. Experiments with the use of an antioxidant show that the death of propagules during VUV irradiation occurs as a result of the direct and indirect effects of radiation, with the share of the latter being 10–15%. The results obtained allow us to conclude that the inactivation of propagules during irradiation with radiation of the long-wave region of the VUV range Δλ = 166–180 nm is the result of both direct and indirect effects with the destruction of both the cell wall and DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali EM (2013) Ozone application for preventing fungal infection in diabetic foot ulcers. Diabetol Croat 42(1):3–22

    Google Scholar 

  • Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJ, Culley D, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K, Berka RM, Braus GH, Braus-Stromeyer SA, Corrochano LM, Dai Z, van Dijck PW, Hofmann G, Lasure LL, Magnuson JK, Menke H, Meijer M, Meijer SL, Nielsen JB, Nielsen ML, van Ooyen AJ, Pel HJ, Poulsen L, Samson RA, Stam H, Tsang A, van den Brink JM, Atkins A, Aerts A, Shapiro H, Pangilinan J, Salamov A, Lou Y, Lindquist E, Lucas S, Grimwood J, Grigoriev IV, Kubicek CP, Martinez D, van Peij NN, Roubos JA, Nielsen J, Baker SE (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21(6):885–897

    Google Scholar 

  • Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RH, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: volume I—gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys 4:1461–1738

    Google Scholar 

  • Crapulli F, Santoro D, Sasges MR, Ray AK (2014) Mechanistic modeling of VUV advanced oxidation process in an annular photoreactor. Water Res 64:209–225

    Google Scholar 

  • Dickinson HR, Johnson WC (1974) Optical properties of sugars. II. Vacuum-ultraviolet absorption of model compounds. J Am Chem Soc 96:5050–5054

    Google Scholar 

  • Griffin DH (1996) Fungal physiology. Wiley, New York

    Google Scholar 

  • Heit G, Neuner A, Saugy PY, Braun AM (1998) Vacuum-UV actinometry. The quantum yield of the photolysis of water. J Chem Phys A 102:5551–5561

    Google Scholar 

  • Hieda K, Kobayashi K, Ito A, Ito T (1984) Comparisions of the effect of vacuum-UV and Far-UV synchrotron radiation on dry yeast cells of different UV sensitivities. Rad Res 98:74–81

    Google Scholar 

  • Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156

    Google Scholar 

  • Inagaki T, Hamm RN, Arakawa ET, Birkhoff RD (1975) Optical property of bovine plasma albumin between 2 and 82 eV. Biopolymers 14:839–847

    Google Scholar 

  • Ito T, Kobayashi K, Ito A (1980) Effect of broad-band vacuum-UV synchrotron radiationon wet yeast cells. Rad Res 82:364–373

    Google Scholar 

  • Ito T, Ito A, Kobayashi K (1981) Effect of 120- to 165-nm vacuum-UV light on wet yeast cells. Rad Res 85(1):161–172

    Google Scholar 

  • Ito T, Ito A, Hieda K, Kobayashi K (1983) Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-UV radiation (145–190 nm). Rad Res 96:532–548

    Google Scholar 

  • Kamzolkina OV, Dunaevskiy YE (2015) Biology of the microfungi cell. KMK Scientific Publications Partnership, Moscow (in Russian)

    Google Scholar 

  • Kirtsideli IYu, Vlasov DYu, Abakumov EV, Gilichinsky DA (2010) Diversity and enzyme activity of microfungi from antarctic soils. Mikologiya I Fitopatologiya 44(5):387–397 (in Russian)

    Google Scholar 

  • Kirtsideli IYu, Vlasov DYu, Novozhilov YuK, Abakumov EV, Barantsevich EP (2018) Assessment of anthropogenic influence on Antarctic mycobiota in areas of Russian Polar Stations. Contemp Probl Ecol 11(5): 449–457

    Google Scholar 

  • Kudryashov YuB (2004) Radiation biophysics (ionizing radiation). Fizmatlit, Moscow (in Russian)

    Google Scholar 

  • Luyet BJ (1932) The effect of UV, X-and cathode rays on the spores of Mucoraceae. Radiology 18:1019–1023

    Google Scholar 

  • Michael BD, Prise KM, Folkard M, Vojnovic B, Brocklehurst B, Munro IH, Hopkirk A (1994) Action spectra for single- and double-strand break induction in plasmid DNA: studies using synchrotron radiation. Int J Radiat Biol 66:569–572

    Google Scholar 

  • Musilkova M, Ujcova E, Seichert L, Fencl Z (1983) Effect of changed cultivation conditions on themorphology of Aspergillus niger and citric acid biosynthesis in laboratory cultivation. Folia Microbiol 27:328–332

    Google Scholar 

  • Nakonechnyj YuV, Pakhatova OV, Dodonova NYa (1996) The vaccum ultraviolet irradiation of green inicellular alga chlamydomonas reinhardtii. Biofizika 41(2):421–427 (in Russian)

    Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237

    Google Scholar 

  • Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and martian conditions. Stud Mycol 61:99–109

    Google Scholar 

  • Onofri S, de la Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Sa´nchez Inigo FJ, Horneck G (2012) Survival of rockcolonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516

    Google Scholar 

  • Onofri S, de Vera JP, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, de la Torre R, Horneck G (2015) Survival of Antarctic cryptoendolithic fungi in simulated martian conditions on board the International Space Station. Astrobiology 12:1–9

    Google Scholar 

  • Onofri S, Selbmann L, Pacelli C, Hallsworth JE, Zucconi L (2018) Integrity of the DNA and cellular ultrastructure of cryptoendolithic fungi in space or mars conditions: a 1.5-year study at the international space station. Life 8(2):23

    Google Scholar 

  • Ozcelik B (2007) Fungi/bactericidal and static effects of ultraviolet light in 254 and 354 nm wavelengths. Res J Microbiol 2:42–49

    Google Scholar 

  • Palffy K, Voros L (2006) Effects of UV-A radiation on desmodesmus armatus: changes in growth rate, pigment content and morphological appearance. Int Rev Hydrobiol 91(5):451–465

    Google Scholar 

  • Parnell J, Cullen D, Sims MR, Bowden S, Cockell CS, Court R, Ehrenfreund P, Gaubert F, Grant W, Parro V, Rohmer M, Sephton M, Stan-Lotter H, Steele A, Toporski J, Vago J (2007) Searching for life on Mars: selection of molecular targets for ESA’s aurora ExoMars mission. Astrobiology 7:578–604

    Google Scholar 

  • Poulet F, Bibring JP, Mustard JF, Gendrin A, Mangold N, Langevin Y, Arvidson RE, Gondez B, Gomez D (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623–627

    Google Scholar 

  • Prabu R, Chand T, Raksha S (2012) Improvement of Aspergillus niger for sodium gluconate synthesis by UV mutation method. E-J Chem 9(4):2052–2057

    Google Scholar 

  • Robson TM, Pancotto VA, Ballaré CL, Sala OE, Scopel AL, Caldwell MM (2004) Reduction of solar UV-B mediates changes in the Sphagnum capitulum microenvironment and the peatland microfungal community. Oecologia 140(3):480–490

    Google Scholar 

  • Salcedo I, Andrade JA, Quiroga JM, Nebot E (2007) Photoreactivation and dark repair in UV-treated microorganisms: effect of temperature. Appl Environ Microbiol 73(5):1594–1600

    Google Scholar 

  • Sarantopoulou E, Stefi A, Kollia Z, Palles D, Petrou PS, Bourkoula A, Koukouvinos G, Velentzas AD, Kakabakos S, Cefalas AC (2014) Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum. J Appl Phys 116:104701-1-15

    Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extremetolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biol 115:937–944

    Google Scholar 

  • Selbmann L, de Hoog GS, Zucconi L, Isola D, Onofri S (2014) Black yeasts from cold habitats. In: Buzzini P (ed) Yeasts from cold habitats

    Google Scholar 

  • Siddiqui A, Dawar S, Zaki M., Hamid (2011) Role of ultra violet (UV-C) radiation in the control of root infecting fungi on groundnut and mung bean. Pak J Bot 43(4): 2221–2224

    Google Scholar 

  • Singaravelan N, Grishkan I, Beharav A, Wakamatsu K, Ito S, Nevo E (2008) Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at “Evolution Canyon”, Mount Carmel, Israel. Melanic Adapt Fungus 3(8):1–5

    Google Scholar 

  • Singh J, Anand K, Rudra D, Singh P (2010) Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Rev Environ Sci Biotechnol 63(1):63–77

    Google Scholar 

  • Smith EC (1936) The effects of radiation on fungi. In: Duggar BM (ed) Biological effect of radiations, vol 2, pp 889–918

    Google Scholar 

  • Tembhurkar VR, Joshi SV, Dama LB, Singh PP, Pawase SR, Nighute SB (2012) Random mutageneisis stimulated overproduction of citric acid by Aspergillus niger. DAV Int J Sci 1(2):53–55

    Google Scholar 

  • Torres A, Hochberg M, Pergament I, Smoum R, Niddam V, Dembitsky VM, Temina M, Dor I, Lev O, Srebnik M, Enk CD (2004) A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur J Biochem 271(4):780–784

    Google Scholar 

  • Vasanthabharathi V, Sajitha N, Jayalakshmi S (2013) Citric acid production from U-V mutated estuarine Aspergillus niger. Adv Biol Res 7(3):89–94

    Google Scholar 

  • Vasilenko T, Slezak M, Kovac I, Bottkova Z, Jakubco J, Kostelnicova M, Tomori Z, Gal P (2010) The effect of equal daily dose achieved by different power densities of low-level laser therapy at 635 and 670 nm on wound tensile strength in rats: a short report. Photomed Laser Surg 28(2):281–283

    Google Scholar 

  • Walton DWH (1984) The terrestrial environment. In: Laws RM (ed) Antarctic ecology, vol 1. Academic Press, London, pp 1–60

    Google Scholar 

  • Weltmann KD, Kindel E, Woedtke T, Hähnel M, Stieber M, Brandenburg R (2010) Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl Chem 82:1223–1237

    Google Scholar 

  • Winkler R (2015) Iodine—a potential antioxidant and the role of Iodine/Iodide in health and disease. Nat Sci 7:548–557

    Google Scholar 

  • Wynn-Williams DD, Edwards HGM (2000) Antarctic ecosystems are models for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075

    Google Scholar 

  • Wynn-Williams DD, Edwards HGM (2001) Environmental UV radiation: biological strategies for protection and avoidance, In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin, pp 244–259

    Google Scholar 

  • Zepp RG, Erickson DJ, Paulc ND, Sulzbergerd B (2007) Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Environ Eff Assess Panel Rep 6(3):135–164

    Google Scholar 

  • Zhdanova NN, Tugay T, Dighton J, Zheltnozhsky V, MCDermott P (2004) Ionizing radiation attracts soil fungi. Mycol Res 108:1089–1096

    Google Scholar 

  • Zvereva G, Kirtsideli I, Machs E, Vangonen A (2018) Mechanisms of the effect of VUV radiation on the microfungi. Proc SPIE 10614:106141S

    Google Scholar 

Download references

Acknowledgements

The authors want to express their gratitude to the E. Machs (Komarov Botanical Institute) for his help in carrying out DNA electrophoresis and to A. Vangonen (Vavilov State optical institute) for his help in recording the infrared transmission spectra of propagules.

This study was carried out as part of the state assignment according to the thematic plan of the Botanical Institute of the Russian Academy of Sciences (theme no. 01201255604) and the Basic Research Program of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Yu. Kirtsideli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zvereva, G.N., Kirtsideli, I.Y. (2020). Features of the Effect of VUV Radiation on Microfungi from Polar Regions. In: Frank-Kamenetskaya, O., Vlasov, D., Panova, E., Lessovaia, S. (eds) Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-21614-6_32

Download citation

Publish with us

Policies and ethics