Skip to main content
Log in

Escherichia coli Membrane-Associated Energy-Dependent Processes and Sensitivity Toward Antibiotics Changes as Responses to Low-Intensity Electromagnetic Irradiation of 70.6 and 73 GHz Frequencies

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Escherichia coli K-12(λ) was sensitive toward low-intensity (non-thermal, flux capacity 0.06 mW cm−2) electromagnetic irradiation (EMI) of extremely high frequency—70.6 and 73 GHz. 1 h exposure to EMI markedly depressed growth and cell viability of bacteria. Membrane-associated processes—total H+ efflux and H2 evaluation by whole cells during glucose fermentation were shown to be lowered as well. At the same time, the F0F1-ATPase activity of membrane vesicles was little depressed with 70.6 GHz irradiation only. This finding was in conformity with non-changed N,N′-dicyclohexylcarbodiimide-sensitive H+ efflux. Furthermore, for understanding the different frequencies action mechanisms, the effects of antibiotics (chloramphenicol, ceftriaxone, kanamycin, and tetracycline) on irradiated cells growth and survival were determined. EMI with the frequencies of 70.6 and 73 GHz as with 51.8 and 53.0 GHz enhanced the sensitivity of bacteria toward antibiotics, but comparison revealed that each frequency had a different portion. Probably, EMI of specific frequency triggered changes in biological processes and afterward in growth and viability of bacteria, creating conditions when the action of antibiotics became facilitated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trushin, M. V. (2003). The possible role of electromagnetic fields in bacterial communication. Journal of Microbiology, Immunology and Infection, 36, 153–160.

    Google Scholar 

  2. Nikolaev, Yu. (2000). Distant interactions in bacteria. Microbiology, 69, 497–503.

    Article  CAS  Google Scholar 

  3. Reguera, G. (2011). When microbial conversations get physical. Trends in Microbiology, 19, 105–116.

    Article  PubMed  CAS  Google Scholar 

  4. Belyaev, I. (2005). Non-thermal biological effects of microwaves: Current knowledge, further perspective, and urgent needs. Electromagnetic Biology and Medicine, 24, 375–403.

    Article  CAS  Google Scholar 

  5. Ukuku, D., Geveke, D., Cooke, P., & Zhang, H. (2008). Membrane damage and viability loss of K-12 in apple juice treated with radio frequency electric field. Journal of Food Protection, 71, 684–690.

    PubMed  Google Scholar 

  6. Betskii, O., Devyatkov, N., & Kislov, V. (2000). Low intensity millimeter waves in medicine and biology. Critical Reviews in Biomedical Engineering, 28, 247–268.

    PubMed  CAS  Google Scholar 

  7. Geveke, D., Brunkhorst, Ch., & Fan, Xu. (2007). Radio frequency electric fields processing of orange juice. Innovative Food Science and Emerging Technologies, 8, 549–554.

    Article  Google Scholar 

  8. Shamis, Yu., Taube, Al., Shramkov, Yu., Mitik-Dineva, N., Vu, B., & Ivanova, E. (2008). Development of a microwave treatment technique for bacterial decontamination of raw meat. International Journal of Food Engineering, 4, 1–13.

    Article  Google Scholar 

  9. Novoselova, E., Glushkova, O., Sinotova, O., & Fesenko, E. (2005). Stress response of the cell to exposure to ultraweak electromagnetic irradiation. Doklady Russian Academy of Sciences, 401, 117–119. (in Russian).

    Google Scholar 

  10. Cohen, I., Cahan, R., Shani, G., Cohen, E., & Abramovich, A. (2010). Effect of 99 GHz continuous millimeter wave electro-magnetic radiation on E. coli viability and metabolic activity. International Journal of Radiation Biology, 86, 390–399.

    Article  PubMed  CAS  Google Scholar 

  11. Pakhomov, A., Yahya, A., Pakhomova, O., Stuck, B., & Murphy, M. (1998). Current state and implications of research on biological effects of millimeter waves. Bioelectromagnetics, 19, 393–413.

    Article  PubMed  CAS  Google Scholar 

  12. Sinitsyn, N., Petrosyan, V., Yolkin, V., Devyatkov, N., Gulyaev, Yu., & Betskii, O. (2000). Special function of the “millimeter wavelength waves—aqueous medium” system in nature. Critical Reviews in Biomedical Engineering, 28, 269–305.

    PubMed  CAS  Google Scholar 

  13. Binhi, V., & Rubin, A. (2007). Magnetobiology: The kT paradox and possible solutions. Electromagnetic Biology and Medicine, 26, 45–62.

    Article  PubMed  CAS  Google Scholar 

  14. Devyatkov, N., Golant, M., & Betski, O. (1991). Acoustoelectric waves in cell membranes and their resonances, in millimeter waves and their role in life processes. Moscow: Radio i svjaz. (in Russian).

    Google Scholar 

  15. Ruediger, H. W. (2009). Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology, 16, 89–102.

    Article  PubMed  CAS  Google Scholar 

  16. Fr¨ohlich, H. (1981). The biological effects of microwaves and related questions. Advances in Electronics and Electron Physics, 53, 85–152.

    Article  Google Scholar 

  17. Fesenko, E., Geletyuk, V., Kazachenko, V., & Chemeris, N. (1995). Preliminary microwave irradiation of water solutions changes their channel-modifying activity. FEBS Letters, 366, 49–52.

    Article  PubMed  CAS  Google Scholar 

  18. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2007). The effects of electromagnetic irradiation of extremely high frequency and low intensity on the growth rate of Escherichia coli and the role of medium pH. Biofizika, 52, 893–898. (in Russian).

    CAS  Google Scholar 

  19. Trchounian, A., Ogandzhanyan, E., Sarkisyan, E., Gonyan, S., Oganesyan, A., & Oganesyan, S. (2001). Membranotropic effects of electromagnetic irradiation of extremely high frequency in Escherichia coli. Biophysics, 46, 69–76.

    Google Scholar 

  20. Torgomyan, H., Kalantaryan, V., & Trchounian, A. (2011). Low intensity electromagnetic irradiation with 70.6 and 73 GHz frequencies affects Escherichia coli growth and changes water properties. Cell Biochemistry and Biophysics, 60, 275–281.

    Article  PubMed  CAS  Google Scholar 

  21. Isakhanyan, V., & Trchounian, A. (2005). Indirect and repeated electromagnetic irradiation with extremely high frequency of bacteria Escherichia coli. Biophysics, 50, 604–606.

    Google Scholar 

  22. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2008). Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics. Cell Biochemistry and Biophysics, 51, 97–103.

    Article  PubMed  CAS  Google Scholar 

  23. Tadevosyan, H., & Trchounian, A. (2009). Effect of coherent extremely high-frequency and low-intensity electromagnetic irradiation on the activity of membrane systems of Escherichia coli bacteria. Biofizika, 54, 1055–1059. (in Russian).

    CAS  Google Scholar 

  24. Guofen, Yu., Coln, E., Schoenbach, K., Gellerman, M., Fox, P., Rec, L., et al. (2002). A study on biological effects of low-intensity millimeter waves. IEEE Transactions on Plasma Science, 30, 1489–1496.

    Article  Google Scholar 

  25. Caubet, R., Pedarros-Caubet, F., Chu, M., Freye, E., de Belém Rodrigues, M., Moreau, J., et al. (2004). A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrobial Agents and Chemotherapy, 48, 4662–4664.

    Article  PubMed  CAS  Google Scholar 

  26. Belyaev, I., Shcheglov, V., Alipov, Y., & Polunin, V. (1996). Resonance effect of millimeter waves in the power range from 10−19 to 3 × 10−3 W/cm2 on Escherichia coli cells at different concentrations. Bioelectromagnetics, 17, 312–321.

    Article  PubMed  CAS  Google Scholar 

  27. Dardalhon, M., Averbeck, D., & Berteaud, A. (1981). Studies on possible genetic effects of microwaves in procaryotic and eucaryotic cells. Radiation and Environmental Biophysics, 20, 37–51.

    Article  PubMed  CAS  Google Scholar 

  28. Lukashevsky, K., & Belyaev, I. (1990). Switching of prophage λ genes in E. coli by millimeter waves. Medical Science Research, 18, 955–957. (in Russian).

    Google Scholar 

  29. Belyaev, I., Alipov, Y., Polunin, V., & Shcheglov, V. (1993). Evidence for dependence of resonant- frequency of millimeter-wave interaction with Escherichia coli Kl2 cells on haploid genome length. Electro- and Magnetobiology, 12, 39–49.

    Google Scholar 

  30. Neshev, N., & Kirilova, E. (1994). Possible nonthermal influence of millimeter waves on proton transfer in biomembranes. Electro- and Magnetobiology, 13, 191–194.

    Google Scholar 

  31. Kandashev, V., & Savin, A. (1997). Resonanse effects of microwaves are caused by their interaction with solitons in α-helical proteins. Electro- and Magnetobiology, 16, 95–106.

    Google Scholar 

  32. Logani, M., & Ziskin, M. (1996). Millimeter-wave radiation has no effect on lipid peroxidation in liposomes. Radiation Research, 145, 231–235.

    Article  PubMed  CAS  Google Scholar 

  33. Torgomyan, H., Tadevosyan, H., & Trchounian, A. (2011). Extremely high frequency electromagnetic irradiation in combination with antibiotics enhances antibacterial effects on Escherichia coli. Current Microbiology, 62, 962–967.

    Article  PubMed  CAS  Google Scholar 

  34. Torgomyan, H., & Trchounian, A. (2011). Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation–reduction state. Biochemical and Biophysical Research Communications, 414, 265–269.

    Article  PubMed  CAS  Google Scholar 

  35. Roostalu, J., Jõers, A., Luidalepp, H., Kaldalu, N., & Tane, T. (2008). Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiology, 8, 68–82.

    Article  PubMed  Google Scholar 

  36. Trchounian, A. (2004). Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transpopters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochemical and Biophysical Research Communications, 315, 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  37. Bagramyan, K., Mnatsakanyan, N., Poladian, A., Vassilian, A., & Trchounian, A. (2002). The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Letters, 516, 172–178.

    Article  PubMed  CAS  Google Scholar 

  38. Gabrielyan, L., Torgomyan, H., & Trchounian, A. (2010). Growth characteristics and hydrogen production by Rhodobacter sphaeroides using various amino acids as nitrogen sources and their combinations with carbon sources. International Journal of Hydrogen Energy, 35, 12201–12207.

    Article  CAS  Google Scholar 

  39. Poladyan, A., Trchounian, K., Tadevosyan, L., & Trchounian, A. (2008). Effects of Ellman’s reagent and other thiol compounds on ion transport and ATPase activity in anaerobically grown Escherichia coli cells. Biochemistry (Moscow) Supplement Series: Membrane Cell Biology, 2, 1–7.

    Google Scholar 

  40. Mnatsakanyan, N., Bagramyan, K., Vassilian, A., Nakamoto, R., & Trchounian, A. (2002). F0 cysteine, bcys21, in the Escherichia coli ATP synthase is involved in regulation of potassium uptake and molecular hydrogen production in anaerobic conditions. Bioscience Reports, 22, 421–430.

    Article  PubMed  CAS  Google Scholar 

  41. McMurry, L., Hendricks, M., & Levy, S. (1986). Effects of toluene permeabilization and cell deenergization on tetracycline resistance in Escherichia coli. Journal of Bacteriology, 29, 681–686.

    CAS  Google Scholar 

  42. Janion, C. (2008). Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. International Journal of Biological Sciences, 4, 338–344.

    Article  PubMed  CAS  Google Scholar 

  43. Nakae, R., & Nakae, T. (1982). Diffusion of aminoglycoside antibiotics across the outer membrane of Escherichia coli. Antimicrobial Agents and Chemotherapy, 22, 554–559.

    PubMed  CAS  Google Scholar 

  44. Guliy, O., Markina, L., Bunin, V., Ignatov, V., & Ignatov, O. (2008). Electro-optical parameters of kanamycin-treated E. coli cell suspensions. Microbiology, 77, 334–338.

    Article  CAS  Google Scholar 

  45. Chung, C., Hung, G., Lam, C., & Laurence, M. (2006). Secondary effects of streptomycin and kanamycin on macromolecular composition of Escherichia coli B23 cell. Journal of Experimental Microbiology and Immunology, 9, 11–15.

    Google Scholar 

  46. Kohanski, M., Dwyer, D., Hayete, B., Lawrence, C., & Collins, J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 130, 797–810.

    Article  PubMed  CAS  Google Scholar 

  47. Balbi, H. (2004). Chloramphenicol: A review. Pediatrics in Review, 25, 284–288.

    Article  PubMed  Google Scholar 

  48. James, C., Mahendran, K., Molitor, A., Bolla, J. M., Bessonov, A., Winterhalter, M., et al. (2009). How β-lactam antibiotics enter bacteria: A dialogue with the porins. PloS One, 4, 1–9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. V. Kalantaryan (Department of High Frequency Radiophysics and Telecommunication, Yerevan State University, Yerevan, Armenia) for supply the electromagnetic waves generator of G4-142 type and for advices. This study was supported by Ministry of Education and Science of the Republic of Armenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Trchounian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torgomyan, H., Trchounian, A. Escherichia coli Membrane-Associated Energy-Dependent Processes and Sensitivity Toward Antibiotics Changes as Responses to Low-Intensity Electromagnetic Irradiation of 70.6 and 73 GHz Frequencies. Cell Biochem Biophys 62, 451–461 (2012). https://doi.org/10.1007/s12013-011-9327-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9327-9

Keywords

Navigation