Advertisement

Beyond Kozeny–Carman: Predicting the Permeability in Porous Media

  • Raphael SchulzEmail author
  • Nadja Ray
  • Simon Zech
  • Andreas Rupp
  • Peter Knabner
Article
  • 121 Downloads

Abstract

Various processes such as heterogeneous reactions or biofilm growth alter a porous medium’s underlying geometric structure. This significantly affects its hydrodynamic parameters, in particular the medium’s effective permeability. An accurate, quantitative description of the permeability is, however, essential for predictive flow and transport modeling. Well-established relations such as the Kozeny–Carman equation or power law approaches including fitting parameters relate the porous medium’s porosity to a scalar permeability coefficient. Opposed to this, upscaling methods directly enable calculating the full, potentially anisotropic, permeability tensor. As input, only the geometric information in terms of a representative elementary volume is needed. To compute the porosity–permeability relations, supplementary cell problems must be solved numerically on this volume and their solutions must be integrated. We apply this approach to provide easy-to-use quantitative porosity–permeability relations that are based on representative single grain, platy, blocky, prismatic soil structures, porous networks, and real geometries obtained from CT-data. As a discretization method, we use discontinuous Galerkin method on structured grids. To make the relations explicit, interpolation of the obtained data is used. We compare the outcome with the well-established relations and investigate the ranges of the validity. From our investigations, we conclude whether Kozeny–Carman-type or power law-type porosity–permeability relations are more reasonable for various prototypic representative elementary volumes. Finally, we investigate the impact of a microporous solid matrix onto the permeability.

Keywords

Permeability Kozeny Carman Power law Upscaling 

Notes

Acknowledgements

This research was kindly supported by the DFG RU 2179 “MAD Soil-Microaggregates: Formation and turnover of the structural building blocks of soils.” We acknowledge the group of Stephan Peth, University of Kassel, Germany, who provided the real 3D scan data.

References

  1. Ahmadi, M.M., Mohammadi, S., Hayati, A.N.: Analytical derivation of tortuosity and permeability of monosized spheres: a volume averaging approach. Phys. Rev. E 83, 8 (2011).  https://doi.org/10.1103/PhysRevE.83.026312 CrossRefGoogle Scholar
  2. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)Google Scholar
  3. Allaire, G., Brizzi, R., Dufrêche, J.F., Mikelić, A., Piatnitski, A.: Ion transport in porous media: derivation of the macroscopic equations using upscaling and properties of the effective coefficients. Comput. Geosci. 17(3), 479–495 (2013).  https://doi.org/10.1007/s10596-013-9342-6 CrossRefGoogle Scholar
  4. Alreshedan, F., Kantzas, A.: Investigation of permeability, formation factor, and porosity relationships for mesaverde tight gas sandstones using random network models. J. Pet. Explor. Product. Technol. 6(3), 545–554 (2016).  https://doi.org/10.1007/s13202-015-0202-x CrossRefGoogle Scholar
  5. Arbogast, T., Lehr, H.L.: Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci. 10(3), 291–302 (2006).  https://doi.org/10.1007/s10596-006-9024-8 CrossRefGoogle Scholar
  6. Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1972)Google Scholar
  7. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)Google Scholar
  8. Bensoussan, A., Lions, J.L., Papanicolau, G.: Asymptotic Analysis of Periodic Structures. North-Holland, Amsterdam (1978)Google Scholar
  9. Berg, C.F.: Permeability description by characteristic length, tortuosity, constriction and porosity. Transp. Porous Media 103(3), 381–400 (2014).  https://doi.org/10.1007/s11242-014-0307-6 CrossRefGoogle Scholar
  10. Bernabé, Y., Bruderer-Weng, C., Maineult, A.: Permeability fluctuations in heterogeneous networks with different dimensionality and topology. J. Geophys. Res. Solid Earth 108(B7), 1 (2003).  https://doi.org/10.1029/2002JB002326 CrossRefGoogle Scholar
  11. Carman, P.: Fluid flow through a granular bed. Trans. Inst. Chem. Eng. 15, 150–167 (1937)Google Scholar
  12. Carman, P.: Permeability of saturated sands, soils and clays. J. Agric. Sci. 29, 263–273 (1939)Google Scholar
  13. Carrier, W.D.: Goodbye, Hazen; hello, Kozeny–Carman. J. Geotech. Geoenviron. Eng. 129(11), 1054–1056 (2003).  https://doi.org/10.1061/(ASCE)1090-0241 CrossRefGoogle Scholar
  14. Chamsri, K., Bennethum, L.S.: Permeability of fluid flow through a periodic array of cylinders. Appl. Math. Model. 39(1), 244–254 (2015).  https://doi.org/10.1016/j.apm.2014.05.024 CrossRefGoogle Scholar
  15. Chapuis, R.P.: Predicting the saturated hydraulic conductivity of soils: a review. Bull. Eng. Geol. Environ. 71(3), 401–434 (2012).  https://doi.org/10.1007/s10064-012-0418-7 CrossRefGoogle Scholar
  16. Chapuis, R.P., Aubertin, M.: Predicting the coefficient of permeability of soils using the Kozeny–Carman equation. Can. Geotech. J. 40(3), 616–628 (2003)Google Scholar
  17. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002).  https://doi.org/10.1137/S0036142900380121 CrossRefGoogle Scholar
  18. Costa, A.: Permeability–porosity relationship: a reexamination of the Kozeny–Carman equation based on a fractal pore-space geometry assumption. Geophys. Res. Lett. 33(2), 1–5 (2006)Google Scholar
  19. Crolet, J.M.: Computational Methods for Flow and Transport in Porous Media. Springer, Dordrecht (2000)Google Scholar
  20. Darcy, H.: Les fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau: ouvrage terminé par un appendice relatif aux fournitures d’eau de plusieurs villes au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tole et de bitume. Dalmont, Kraljevica (1856)Google Scholar
  21. Duda, A., Koza, Z., Matyka, M.: Hydraulic tortuosity in arbitrary porous media flow. Phys. Rev. E 84, 8 (2011).  https://doi.org/10.1103/PhysRevE.84.036319 CrossRefGoogle Scholar
  22. Dvorkin, J.: Kozeny–Carman equation revisited. Accessed 15 Dec 2016Google Scholar
  23. Galindo-Rosales, F.J., Campo-Deaño, L., Pinho, F.T., van Bokhorst, E., Hamersma, P.J., Oliveira, M.S.N., Alves, M.A.: Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media. Microfluid. Nanofluid. 12(1), 485–498 (2012).  https://doi.org/10.1007/s10404-011-0890-6 CrossRefGoogle Scholar
  24. Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77, 1461–1477 (2013).  https://doi.org/10.2136/sssaj2012.0435 CrossRefGoogle Scholar
  25. Griebel, M., Klitz, M.: Homogenization and numerical simulation of flow in geometries with textile microstructures. Multiscale Model. Simul. 8(4), 1439–1460 (2010).  https://doi.org/10.1137/09077059X CrossRefGoogle Scholar
  26. Hallett, P., Karim, K., Bengough, A., Otten, W.: Biophysics of the vadose zone: from reality to model systems and back again. Vadose Zone J. 12(4), 17 (2013).  https://doi.org/10.2136/vzj2013.05.0090 CrossRefGoogle Scholar
  27. Hommel, J., Coltman, E., Class, H.: Porosity–permeability relations for evolving pore space: a review with a focus on (bio-)geochemically altered porous media. Transp. Porous Media 124(2), 589–629 (2018).  https://doi.org/10.1007/s11242-018-1086-2 CrossRefGoogle Scholar
  28. Hornung, U.: Homogenization and Porous Media. Springer, Berlin (1997)Google Scholar
  29. Huang, X., Yue, W., Liu, D., Yue, J., Li, J., Sun, D., Yang, M., Wang, Z.: Monitoring the intracellular calcium response to a dynamic hypertonic environment. Sci. Rep. 6, 8 (2016).  https://doi.org/10.1038/srep23591 CrossRefGoogle Scholar
  30. Huang, Z., Yao, J., Wang, C.: Numerical calculation of equivalent permeability tensor for fractured vuggy porous media based on homogenization theory. Commun. Comput. Phys. 9(1), 180–204 (2011)Google Scholar
  31. Kozeny, J.: Über kapillare Leitung des Wassers im Boden. Sitzungsber Akad. Wiss. Wien 136(2a), 271–306 (2004)Google Scholar
  32. Li, X., Huang, H., Meakin, P.: A three-dimensional level set simulation of coupled reactive transport and precipitation/dissolution. Int. J. Heat Mass Transf. 53, 2908–2923 (2010).  https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.044 CrossRefGoogle Scholar
  33. Menke, H., Bijeljic, B., Blunt, M.: Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: effect of initial pore structure and initial brine ph. Geochim. Cosmochim. Acta 204, 267–285 (2017).  https://doi.org/10.1016/j.gca.2017.01.053 CrossRefGoogle Scholar
  34. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989).  https://doi.org/10.1137/0520043 CrossRefGoogle Scholar
  35. Nimmo, J.: Porosity and pore size distribution. Encycl. Soils Environ. 3, 295–303 (2004)Google Scholar
  36. Ozgumus, T., Mobedi, M., Ozkol, U.: Determination of Kozeny constant based on porosity and pore to throat size ratio in porous medium with rectangular rods. Eng. Appl. Comput. Fluid Mech. 8(2), 308–318 (2014).  https://doi.org/10.1080/19942060.2014.11015516 CrossRefGoogle Scholar
  37. Peszynska, M., Trykozko, A., Iltis, G., Schlueter, S., Wildenschild, D.: Biofilm growth in porous media: experiments, computational modeling at the porescale, and upscaling (pore scale modeling and experiments). Adv. Water Resour. 95, 288–301 (2016).  https://doi.org/10.1016/j.advwatres.2015.07.008 CrossRefGoogle Scholar
  38. Pinela, J., Kruz, S., Heitor Reis, A., Miguel, A., Aydin, M.: Permeability–porosity relationship assessment by 2D numerical simulations. In: Proceedings of the 16th International Symposium on Transport Phenomena (2005)Google Scholar
  39. Pisani, L.: Simple expression for the tortuosity of porous media. Transp. Porous Media 88(2), 193–203 (2011).  https://doi.org/10.1007/s11242-011-9734-9 CrossRefGoogle Scholar
  40. Quintard, M.: Diffusion in isotropic and anisotropic porous systems: three-dimensional calculations. Transp. Porous Media 11(2), 187–199 (1993).  https://doi.org/10.1007/BF01059634 CrossRefGoogle Scholar
  41. Randall, C.L., Kalinin, Y.V., Jamal, M., Manohar, T., Gracias, D.H.: Three-dimensional microwell arrays for cell culture. Lab Chip 11(1), 127–131 (2011).  https://doi.org/10.1039/c0lc00368a CrossRefGoogle Scholar
  42. Ray, N., van Noorden, T., Frank, F., Knabner, P.: Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure. Transp. Porous Media 95(3), 669–696 (2012).  https://doi.org/10.1007/s11242-012-0068-z CrossRefGoogle Scholar
  43. Ray, N., Rupp, A., Schulz, R., Knabner, P.: Old and new approaches predicting the diffusion in porous media. Transp. Porous Media 124(3), 803–824 (2018).  https://doi.org/10.1007/s11242-018-1099-x CrossRefGoogle Scholar
  44. Reuter, B., Rupp, A., Aizinger, V., Frank, F., Knabner, P.: Festung: a Matlab/GNU Octave toolbox for the discontinuous Galerkin method. Part IV: generic problem framework and model-coupling interface (2018)Google Scholar
  45. Reuter, B., Rupp, A., Aizinger, V., Knabner, P.: Discontinuous Galerkin method for coupling hydrostatic free surface flows to saturated subsurface systems. Comput. Math. Appl. 77, 19 (2019).  https://doi.org/10.1016/j.camwa.2018.12.020 CrossRefGoogle Scholar
  46. Rupp, A., Knabner, P.: Convergence order estimates of the local discontinuous Galerkin method for instationary Darcy flow. Numer. Methods Partial Differ. Equ. 33(4), 1374–1394 (2017).  https://doi.org/10.1002/num.22150 CrossRefGoogle Scholar
  47. Rupp, A., Knabner, P., Dawson, C.: A local discontinuous Galerkin scheme for Darcy flow with internal jumps. Comput. Geosci. 22(4), 1149–1159 (2018).  https://doi.org/10.1007/s10596-018-9743-7 CrossRefGoogle Scholar
  48. Scherer, G.W., Valenza, J.J., Simmons, G.: New methods to measure liquid permeability in porous materials (cementitious materials as model porous media: nanostructure and transport processes). Cement Concr. Res. 37(3), 386–397 (2007).  https://doi.org/10.1016/j.cemconres.2006.09.020 CrossRefGoogle Scholar
  49. Shen, L., Chen, Z.: Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62(14), 3748–3755 (2004)Google Scholar
  50. Smith, M.M., Sholokhova, Y., Hao, Y., Carroll, S.A.: CO\(_2\)-induced dissolution of low permeability carbonates. Part I: characterization and experiments. Adv. Water Resour. 62, 370–387 (2013).  https://doi.org/10.1016/j.advwatres.2013.09.008 CrossRefGoogle Scholar
  51. Sobieski, W., Zhang, Q.: Sensitivity analysis of Kozeny–Carman and Ergun equations. Technol. Sci. 17(3), 235–248 (2014)Google Scholar
  52. Sullivan, R.R., Hertel, K.R.: The permeability methods for determining specific surface of fibers and powders. Adv. Colloid Sci. 1, 37–80 (1942)Google Scholar
  53. Szymkiewicz, A.: Modelling water flow in unsaturated porous media: accounting for nonlinear permeability and material heterogeneity. Springer, Berlin (2012)Google Scholar
  54. Troeh, F.R., Jabro, J.D., Kirkham, D.: Gaseous diffusion equations for porous materials. Geoderma 27(3), 239–253 (1982).  https://doi.org/10.1016/0016-7061(82)90033-7 CrossRefGoogle Scholar
  55. Valdes-Parada, F., Ochoa-Tapia, J., Alvarez-Ramirez, J.: Validity of the permeability Carman–Kozeny equation: a volume averaging approach. Franc. J. Valdes Parada 388, 789 (2009).  https://doi.org/10.1016/j.physa.2008.11.024 CrossRefGoogle Scholar
  56. van Noorden, T.: Crystal precipitation and dissolution in a porous medium: effective equations and numerical experiments. Multiscale Model. Simul. 7, 1220–1236 (2009)Google Scholar
  57. Wang, Y., Sun, S.: Direct calculation of permeability by high-accurate finite difference and numerical integration methods. Commun. Comput. Phys. 20(2), 405–440 (2016).  https://doi.org/10.4208/cicp.210815.240316a CrossRefGoogle Scholar
  58. Whitaker, S.: The Method of Volume Averaging. Springer, Berlin (1999)Google Scholar
  59. Wieners, C.: Distributed point objects. A new concept for parallel finite elements. In: T. Barth, M. Griebel, D. Keyes, R. Nieminen, D. Roose, T. Schlick, R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, J. Xu (eds.) Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering, vol. 40, pp. 175–182. Springer, Berlin (2005). https://doi.org/10.1007/3540268251_14
  60. Yang, D., Wang, W., Chen, W., Tan, X., Wang, L.: Revisiting the methods for gas permeability measurement in tight porous medium. J. Rock Mech. Geotech. Eng. 11(2), 263–276 (2019).  https://doi.org/10.1016/j.jrmge.2018.08.012 CrossRefGoogle Scholar
  61. Yazdchi, K., Srivastava, S., Luding, S.: On the validity of the Carman–Kozeny equation in random fibrous media. In: E. Onate, D. Owen (eds.) PARTICLES 2011, pp. 1–10. ECCOMAS (2011)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Raphael Schulz
    • 1
    Email author
  • Nadja Ray
    • 1
  • Simon Zech
    • 1
  • Andreas Rupp
    • 1
  • Peter Knabner
    • 1
  1. 1.Department of MathematicsFriedrich–Alexander University of Erlangen–NürnbergErlangenGermany

Personalised recommendations