Skip to main content
Log in

Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this article we investigate the permeability of a porous medium as given in Darcy’s law. The permeability is described by an effective hydraulic pore radius in the porous medium, the fluctuation in local hydraulic pore radii, the length of streamlines, and the fractional volume conducting flow. The effective hydraulic pore radius is related to a characteristic hydraulic length, the fluctuation in local hydraulic radii is related to a constriction factor, the length of streamlines is characterized by a tortuosity, and the fractional volume conducting flow from inlet to outlet is described by an effective porosity. The characteristic length, the constriction factor, the tortuosity, and the effective porosity are thus intrinsic descriptors of the pore structure relative to direction. We show that the combined effect of our pore structure description fully describes the permeability of a porous medium. The theory is applied to idealized porous media, where it reproduces Darcy’s law for fluid flow derived from the Hagen–Poiseuille equation. We also apply this theory to full network models of Fontainebleau sandstone, where we show how the pore structure and permeability correlate with porosity for such natural porous media. This work establishes how the permeability can be related to porosity, in the sense of Kozeny–Carman, through fundamental and well-defined pore structure parameters: characteristic length, constriction, and tortuosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adler, P.: Porous Media: Geometry and Transports. Butterworth-Heinemann, Stoneham (1992)

    Google Scholar 

  • Adler, P., Jacquin, C., Quiblier, J.: Flow in simulated porous media. Int. J. Multiph. Flow 16(4), 691–712 (1990)

    Article  Google Scholar 

  • Aris, R.: Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover publications, New York (1989)

    Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Pinczewski, M.V., Lindquist, W.: Accurate estimation of transport properties from microtomographic images. Geophys. Res. Lett. 28(17), 3361–3364 (2001)

    Article  Google Scholar 

  • Bakke, S., Øren, P.: 3-d Pore-scale modelling of sandstones and flow simulations in the pore networks. SPE J. 2(2), 136–149 (1997)

    Article  Google Scholar 

  • Banavar, J.R., Schwartz, L.M.: Magnetic resonance as a probe of permeability in porous media. Phys. Rev. Lett. 58(14), 1411 (1987)

    Article  Google Scholar 

  • Bear, J.: Dynamics of fluids in porous media. Dover publications, New York (1988)

    Google Scholar 

  • Bear, J., Bachmat, Y.: A generalized theory on hydrodynamic dispersion in porous media. In: IASH Symposium on Artificial Recharge and Management of Aquifers, vol. 72, pp. 7–16 (1967)

  • Berg, C.: Re-examining Archie’s law: conductance description by tortuosity and constriction. Phys. Rev. E 86, 046–314 (2012)

    Article  Google Scholar 

  • Berg, R.R.: Method for determining permeability from reservoir rock properties. Trans. Gulf Coast Assoc. Geol. Soc. 20, 303–317 (1970)

    Google Scholar 

  • Blunt, M.: Flow in porous media-pore-network models and multiphase flow. Current Opinion Colloid Interface Sci. 6(3), 197–207 (2001)

    Article  Google Scholar 

  • Carman, P.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)

    Google Scholar 

  • Darcy, H.: Dètermination des lois d’ècoulement de l’eau à travers le sable (1856). http://books.google.no/books?id=DOwbgyt_MzQC&printsec=frontcover#v=onepage&q&f=false

  • Duda, A., Koza, Z., Matyka, M.: Hydraulic tortuosity in arbitrary porous media flow. Phys. Rev. E 84(3), 036–319 (2011)

    Google Scholar 

  • Dullien, F.: Porous Media: Fluid Transport and Pore Structure. Academic press, San Diego (1992)

    Google Scholar 

  • E-Core: v. 1.5.2. NumericalRocks, Software 2012

  • Fatt, I.: The network model of porous media. Trans. Am. Inst. Min. Metall. Pet. Eng. 207, 144–181 (1956)

    Google Scholar 

  • Guo, P.: Dependency of tortuosity and permeability of porous media on directional distribution of pore voids. Transport Porous Media 95(2), 285–303 (2012)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F., Torquato, S.: A superior descriptor of random textures and its predictive capacity. In: Proceedings of the National Academy of Sciences, 106(42), 17634–17639 (2009)

  • Johnson, D.L., Koplik, J., Schwartz, L.M.: New pore-size parameter characterizing transport in porous media. Phys. Rev. Lett. 57, 2564–2567 (1986)

    Article  Google Scholar 

  • Katz, A., Thompson, A.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34(11), 8179–8181 (1986)

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J.: Tortuous flow in porous media. Phys. Rev. E 54(1), 406 (1996)

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J.: Permeability and effective porosity of porous media. Phys. Rev. E 56(3), 3319 (1997)

    Article  Google Scholar 

  • Kozeny, J.: Ueber kapillare leitung des wassers im boden. Wien Akad. Wiss 136(2a), 271 (1927)

    Google Scholar 

  • Lemaitre, R., Adler, P.: Fractal porous media iv: Three-dimensional stokes flow through random media and regular fractals. Transport Porous Media 5(4), 325–340 (1990)

    Article  Google Scholar 

  • Mason, G., Morrow, N.R.: Capillary behavior of a perfectly wetting liquid in irregular triangular tubes. J. Colloid Interface Sci. 141(1), 262–274 (1991)

    Article  Google Scholar 

  • Mavko, G., Nur, A.: The effect of a percolation threshold in the Kozeny–Carman relation. Geophysics 62, 1480 (1997)

    Article  Google Scholar 

  • Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-ct images. Math. Geosci. 45(1), 103–125 (2013)

    Article  Google Scholar 

  • Øren, P., Bakke, S., Arntzen, O.: Extending predictive capabilities to network models. SPE J. 3(4), 324–336 (1998)

    Article  Google Scholar 

  • Øren, P., Bakke, S., Rueslåtten, H.: Digital core laboratory: rock and flow properties derived from computer generated rocks. In: Proceedings of the Annual Symposium of the Society of Core Analysts (2006)

  • Øren, P.E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transport Porous Media 46(2–3), 311–343 (2002)

    Article  Google Scholar 

  • Patzek, T., Silin, D.: Shape factor and hydraulic conductance in noncircular capillaries: I. One-phase creeping flow. J. Colloid Interface Sci. 236(2), 295–304 (2001)

    Article  Google Scholar 

  • Saeger, R., Scriven, L., Davis, H.: Flow, conduction, and a characteristic length in periodic bicontinuous porous media. Phys. Rev. A 44(8), 5087 (1991)

    Article  Google Scholar 

  • Schopper, J.: A theoretical investigation on the formation factor/permeability/porosity relationship using a network model. Geophys. Prospect. 14(3), 301–341 (1966)

    Article  Google Scholar 

  • Schwartz, L., Auzerais, F., Dunsmuir, J., Martys, N., Bentz, D., Torquato, S.: Transport and diffusion in three-dimensional composite media. Phys. A 207(1), 28–36 (1994)

    Article  Google Scholar 

  • Schwartz, L., Martys, N., Bentz, D., Garboczi, E., Torquato, S.: Cross-property relations and permeability estimation in model porous media. Phys. Rev. E 48(6), 4584 (1993)

    Article  Google Scholar 

  • Van Brakel, J., Heertjes, P.: Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int. J. Heat Mass Transf. 17(9), 1093–1103 (1974)

    Article  Google Scholar 

  • Yeong, C., Torquato, S.: Reconstructing random media. ii. Three-dimensional media from two-dimensional cuts. Phys. Rev. E 58(1), 224 (1998)

    Article  Google Scholar 

  • Zhang, X., Knackstedt, M.A.: Direct simulation of electrical and hydraulic tortuosity in porous solids. Geophys. Res. Lett. 22(17), 2333–2336 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Rudolf Held (Statoil) for valuable discussions and contributions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Fredrik Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, C.F. Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity. Transp Porous Med 103, 381–400 (2014). https://doi.org/10.1007/s11242-014-0307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0307-6

Keywords

Navigation