Skip to main content
Log in

Ion transport in porous media: derivation of the macroscopic equations using upscaling and properties of the effective coefficients

  • Original   Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this work, we undertake a numerical study of the effective coefficients arising in the upscaling of a system of partial differential equations describing transport of a dilute N-component electrolyte in a Newtonian solvent through a rigid porous medium. The motion is governed by a small static electric field and a small hydrodynamic force, around a nonlinear Poisson–Boltzmann equilibrium with given surface charges of arbitrary size. This approach allows us to calculate the linear response regime in a way initially proposed by O’Brien. The O’Brien linearization requires a fast and accurate solution of the underlying Poisson–Boltzmann equation. We present an analysis of it, with the discussion of the boundary layer appearing as the Debye–Hückel parameter becomes large. Next, we briefly discuss the corresponding two-scale asymptotic expansion and reduce the obtained two-scale equations to a coarse scale model. Our previous rigorous study proves that the homogenized coefficients satisfy Onsager properties, namely they are symmetric positive definite tensors. We illustrate with numerical simulations several characteristic situations and discuss the behavior of the effective coefficients when the Debye–Hückel parameter is large. Simulated qualitative behavior differs significantly from the situation when the surface potential is given (instead of the surface charges). In particular, we observe the Donnan effect (exclusion of co-ions for small pores).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, P., Mityushev, V.: Effective medium approximation and exact formulae for electrokinetic phenomena in porous media. J. Phys. A: Math. Gen. 36, 391–404 (2003)

    Article  Google Scholar 

  2. Allaire, G., Dufrêche, J.-F., Mikelić, A., Piatnitski, A.: Asymptotic analysis of the Poisson–Boltzmann equation describing electrokinetics in porous media. Nonlinearity 26, 881–910 (2013)

    Article  Google Scholar 

  3. Allaire, G., Mikelić, A., Piatnitski, A.: Homogenization of the linearized ionic transport equations in rigid periodic porous media. J. Math. Phys. 51, 123103 (2010). doi:10.1063/1.3521555

    Article  Google Scholar 

  4. Auriault, J.-L., Strzelecki, T.: On the electro-osmotic flow in a saturated porous medium. Int. J. Eng. Sci. 19, 915-928 (1981)

    Article  Google Scholar 

  5. Barcilon, V., Chen, D.-P., Eisenberg, R.S., Jerome, J.W.: Qualitative properties of steady-state Poisson–Nernst–Planck systems: perturbation and simulation study. SIAM J. Appl. Math. 57(3), 631–648 (1997)

    Article  Google Scholar 

  6. Benco, L., Tunega, D., Hafner, J., Lischka, H.: Ab initio density functional theory applied to the structure and proton dynamics of clays. Chem. Phys. Lett. 333, 479 (2001)

    Article  Google Scholar 

  7. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic analysis for periodic structures. In: Studies in Mathematics and its Applications, vol. 5. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  8. Cadene, A., Durand-Vidal, S., Turq, P., Brendle, J.: Study of individual Na-montmorillonite particles size, morphology, and apparent charge. J. Colloid Interface Sci. 285, 719–730, (2005)

    Article  Google Scholar 

  9. Chan, D.Y., Horn, R.G.: The drainage of thin liquid films between solid surfaces, J. Chem. Phys. 83, 5311–5325 (1985)

    Article  Google Scholar 

  10. Coelho, D., Shapiro, M., Thovert, J.F., Adler, P.: Electro-osmotic phenomena in porous media. J. Colloid Interface Sci. 181, 169–90 (1996)

    Article  Google Scholar 

  11. Dormieux, L., Lemarchand, E., Coussy, O.: Macroscopic and micromechanical approaches to the modelling of the osmotic swelling in clays. Transp. Porous Media 50, 75–91 (2003)

    Article  Google Scholar 

  12. Dufrêche, J.-F., Bernard, O., Durand-Vidal, S., Turq, P.: Analytical theories of transport in concentrate electrolyte solutions from the msa. J. Phys .Chem. B 109, 9873 (2005)

    Article  Google Scholar 

  13. Dufrêche, J.-F., Marry, V., Malikova, N., Turq, P.: Molecular hydrodynamics for electro-osmosis in clays: from Kubo to Smoluchowski. J. Mol. Liq. 118, 145 (2005)

    Article  Google Scholar 

  14. Edwards, D.A.: Charge transport through a spatially periodic porous medium: electrokinetic and convective dispersion phenomena. Philos. Trans. R. Soc. Lond. A 353, 205–242 (1995)

    Article  Google Scholar 

  15. Greathouse, J.A., Refson, K., Sposito, G.M.: Molecular dynamics simulation of water mobility in magnesium-smectite hydrates. J. Am. Chem. Soc. 122, 11459 (2000)

    Article  Google Scholar 

  16. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1969)

  17. Gupta, A.K., Coelho, D., and Adler, P.: Electroosmosis in porous solids for high zeta potentials, J Colloid Interface Sci. 303, 593–603 (2006)

    Article  Google Scholar 

  18. Gupta, A.K., Coelho, D., Adler, P.: Ionic transport in porous media for high zeta potentials, J Colloid Interface Sci. 314, 733–747 (2006)

    Article  Google Scholar 

  19. Hansen, J.-P., Löwen, H.: Effective interactions between electrical double layers. Ann. Rev. Phys. Chem. 51, 209 (2000)

    Article  Google Scholar 

  20. Hornung, U. ed.: Homogenization and porous media. In: Interdisciplinary Applied Mathematics, vol. 6. Springer-Verlag, New York (1997)

    Google Scholar 

  21. Karaborni, S., Smit, B., Heidung, W., Urai, J., van Oort, E.: The swelling of clays: simulation of the hydration of montmorillonite. Science 271, 1102 (1996)

    Article  Google Scholar 

  22. Karniadakis, G., Beskok, A., Aluru, N.: Microflows and nanoflows. Fundamentals and simulation. In: Interdisciplinary Applied Mathematics, vol. 29. Springer, New York (2005)

    Google Scholar 

  23. Leroy, P., Revil, A.: A triple layer model of the surface electrochemical properties of clay minerals. J. Colloid Interface Sci 270, 37 (2004)

    Article  Google Scholar 

  24. Lions, J.-L.: Some Methods in the Mathematical Analysis of Systems and their Controls. Science Press, Beijing, Gordon and Breach, New York (1981)

    Google Scholar 

  25. Looker, J.R.: Semilinear elliptic Neumann problems and rapid growth in the nonlinearity. Bull. Aust. Math. Soc. 74(2), 161–175 (2006)

    Article  Google Scholar 

  26. Looker, J.R., Carnie, S.L.: Homogenization of the ionic transport equations in periodic porous media. Transp. Porous Media 65, 107–131 (2006)

    Article  Google Scholar 

  27. Lyklema, J.: Fundamentals of Interface and Colloid Science, vol 2. Academic (1995)

  28. Malikova, N., Marry, V., Dufrêche, J.-F., Turq, P.: Temperature effect in a montmorillonite clay at low hydration-microscopic simulation. Mol. Phys. 102, 1965 (2004)

    Article  Google Scholar 

  29. Marino, S., Shapiro, M., Adler, P.: Coupled transports in heterogeneous media, J. Colloid Interface Sci. 243, 391–419 (2001)

    Article  Google Scholar 

  30. Marry, V., Dufrêche, J.-F., Jardat, M., Turq, P.: Equilibrium and electrokinetic phenomena in charged porous media from microscopic and mesoscopic models: electro-osmosis in montmorillonite. Mol. Phys. 101, 3111 (2003)

    Article  Google Scholar 

  31. Marry, V., Turq, P.: Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites. J. Phys. Chem. B 107, 183 (2003)

    Article  Google Scholar 

  32. Moyne, C., Murad, M.: Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. Int. J. Solids Struct. 39, 6159–6190 (2002)

    Article  Google Scholar 

  33. Moyne, C., Murad, M.: Macroscopic behavior of swelling porous media derived from micromechanical analysis. Transp. Porous Media 50, 127–151 (2003)

    Article  Google Scholar 

  34. Moyne, C., Murad, M.: A Two-scale model for coupled electro-chemomechanical phenomena and Onsager’s reciprocity relations in expansive clays: I Homogenization analysis. Transp. Porous Media 62, 333–380 (2006)

    Article  Google Scholar 

  35. Moyne, C., Murad, M.: A two-scale model for coupled electro-chemo-mechanical phenomena and Onsager’s reciprocity relations in expansive clays: II. computational validation. Transp. Porous Media 63(1), 13–56 (2006)

    Article  Google Scholar 

  36. Moyne, C., Murad, M.: A dual-porosity model for ionic solute transport in expansive clays. Comput. Geosci. 12, 47–82 (2008)

    Article  Google Scholar 

  37. O’Brien, R.W., White, L.R.: Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 2(74), 1607–1626 (1978)

    Google Scholar 

  38. Park, J.-H., Jerome, J.W.: Qualitative properties of steady-state Poisson–Nernst–Planck systems: mathematical study. SIAM J. Appl. Math. 57(3), 609–630 (1997)

    Article  Google Scholar 

  39. Pironneau, O., Hecht, F., Le Hyaric, A.: FreeFem+ + version 3.20. http://www.freefem.org/ff++ (2012)

  40. Ray, N., Ch. Eck, Muntean, A., Knabner, P.: Variable choices of scaling in the homogenization of a Nernst–Planck–Poisson problem. Institut für Angewandte Mathematik, Universitaet Erlangen-Nürnberg (2011) (Preprint no. 344)

  41. Ray, N., Muntean, A., Knabner, P.: Rigorous homogenization of a Stokes–Nernst–Planck–Poisson system. J. Math. Anal. Appl. 390, 374–393 (2012)

    Article  Google Scholar 

  42. Ray, N., van Noorden, T., Frank, F., Knabner, P.: Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure. Transp. Porous Media 95, 669–696 (2012)

    Article  Google Scholar 

  43. Rosanne, M., Paszkuta, M., Adler, P.: Electrokinetic phenomena in saturated compact clays. J Colloid Interface Sci. 297, 353–364 (2006)

    Article  Google Scholar 

  44. Rosanne, M., Paszkuta, M., Thovert, J.F., Adler, P.: Electro-osmotic coupling in compact clays. Geophys. Res. Lett. 31, L18614 (2004)

    Article  Google Scholar 

  45. Sanchez-Palencia, E.: Nonhomogeneous media and vibration theory. In: Lecture Notes in Physics, vol. 127. Springer-Verlag, Berlin (1980)

    Google Scholar 

  46. Schmuck, M.: Modeling and deriving porous media Stokes–Poisson–Nernst–Planck equations by a multiple-scale approach. Commun. Math. Sci. 9, 685–710 (2011)

    Google Scholar 

  47. Schmuck, M.: First error bounds for the porous media approximation of the Poisson–Nernst–Planck equations. ZAMM Z. Angew. Math. Mech. 92, 304–319 (2012)

    Article  Google Scholar 

  48. Skipper, N.T., Sposito, G., Chang, F.-R.C.: Monte Carlo simulation of interlayer molecular structure in swelling clay minerals; 2, monolayer hydrates. Clays Clay Miner. 43, 294 (1995)

    Article  Google Scholar 

  49. Trizac, E., Bocquet, E.L., Weiss, J.J., Aubouy, M.: Effective interactions and phase behaviour for a model clay suspension in an electrolyte. J. Phys. Condens. Matter 122, 11459 (2000)

    Google Scholar 

  50. Tunega, D., Gerzabek, M.H., Lischka, H.: Ab initio molecular dynamics study of a monomolecular water layer on octahedral and tetrahedral kaolinite surfaces. J. Phys. Chem. B 108, 5930 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Allaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allaire, G., Brizzi, R., Dufrêche, JF. et al. Ion transport in porous media: derivation of the macroscopic equations using upscaling and properties of the effective coefficients. Comput Geosci 17, 479–495 (2013). https://doi.org/10.1007/s10596-013-9342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-013-9342-6

Keywords

Navigation