Skip to main content
Log in

Involvement of CsCDPK20 and CsCDPK26 in Regulation of Thermotolerance in Tea Plant (Camellia sinensis)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Calcium-dependent protein kinases (CDPKs) play critical roles in the regulation of plant growth, development, and stress response. In this study, Camellia sinensis CsCDPK1, CsCDPK3, CsCDPK20, and CsCDPK26 were cloned and functionally characterized. Bioinformatics analyses showed that all analyzed CsCDPK genes encoded the expected CDPK structures. Subcellular localization indicated that the four CsCDPK proteins were localized to the cytoplasm and nucleus in onion epidermal cells. The quantitative real-time PCR results indicated that the four CsCDPK genes exhibited tissue-specific expression patterns. Exposure to heat stress and exogenous abscisic acid induced increases in CsCDPK20 and CsCDPK26 transcript abundance at different time points. Furthermore, overexpression of CsCDPK20 and CsCDPK26 increased the thermotolerance in transgenic Arabidopsis thaliana plants. The proline content in leaves was significantly higher in transgenic plants than that in wild-type under heat stress, whereas malondialdehyde content was lower in transgenic plants. Additionally, expression of stress-responsive genes (i.e., AtAPX1, AtPOD, AtProT1, AtP5CS2, AtHSFA2, AtHSP70, AtHSP101, AtRD29B, AtRAB18, AtABI1, AtRBOHD, and AtRBOHF) was increased in the CsCDPK20 and CsCDPK26 transgenic A. thaliana plants compared with that in the wild type. Collectively, our results suggest that CsCDPK20 and CsCDPK26 may act as positive regulator in C. sinensis response to heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Rao KS (2000) Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol 123:1301–1311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asano T, Tanaka N, Yang GX, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46:356–366

    Article  PubMed  CAS  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Cao X, Yi J, Wu Z, Luo X, Zhong XH, Wu J, Khan MA, Zhao Y, Yi MF (2013) Involvement of Ca2+ and CaM3 in regulation of thermotolerance in lily (Lilium longiflorum). Plant Mol Biol Rep 31:1293–1304

    Article  CAS  Google Scholar 

  • Carthew RW (2006) Gene regulation by microRNAs. Curr Opin Genet Dev 16:203–208

    Article  PubMed  CAS  Google Scholar 

  • Chang WJ, Su HS, Li WJ, Zhang ZL (2009) Expression profiling of a novel calcium-dependent protein kinase gene, LeCPK2, from tomato (Solanum lycopersicum) under heat and pathogen-related hormones. Biosci Biotechnol Biochem 73:2427–2431

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103

    Article  PubMed  CAS  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC, Pickard BG, Harper JF (2003) Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol 132:1840–1848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Ding Y, Cao J, Ni L, Zhu Y, Zhang A, Tan M, Jiang M (2013) ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize. J Exp Bot 64:871–884

    Article  PubMed  CAS  Google Scholar 

  • Dubrovina AS, Kiselev KV, Khristenko VS, Aleynova OA (2017) The calcium-dependent protein kinase gene VaCPK29 is involved in grapevine responses to heat and osmotic stresses. Plant Growth Regul 82:79–89

    Article  CAS  Google Scholar 

  • Fernandez P, di Rienzo JA, Moschen S, Dosio GAA, Aguirrezábal LAN, Hopp HE, Paniego N, Heinz RA (2011) Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis. Plant Cell Rep 30:63–74

    Article  PubMed  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs—a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Phys 51:463–499

    Article  CAS  Google Scholar 

  • Hetherington A, Trewavas A (1982) Calcium-dependent protein kinase in pea shoot membranes. FEBS Lett 145:67–71

    Article  CAS  Google Scholar 

  • Hong SW, Vierling E (2001) Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J 27:25–35

    Article  PubMed  CAS  Google Scholar 

  • Huang QS, Wang HY, Gao P, Wang GY, Xia GX (2008) Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development. Plant Cell Rep 27:1869–1875

    Article  PubMed  CAS  Google Scholar 

  • Irigoyen JJ, Emerich DW, Sanchezdiaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plantarum 84:55–60

    Article  CAS  Google Scholar 

  • Ivashuta S, Liu JY, Liu JQ, Lohar DP, Haridas S, Bucciarelli B, VandenBosch KA, Vance CP, Harrison MJ, Gantt JS (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17:2911–2921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang Q, Wang F, Li MY, Ma J, Tan GF, Xiong AS (2014) Selection of suitable reference genes for qPCR normalization under abiotic stresses in Oenanthe javanica (BI.) DC. PLoS One 9:e92262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang S, Zhang D, Wang L, Pan JW, Liu Y, Kong XP, Zhou Y, Li DQ (2013) A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem 71:112–120

    Article  PubMed  CAS  Google Scholar 

  • Klimecka M, Muszynska G (2007) Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol 54:219–233

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohuraa I, Kawakitaa K, Yokotab N, Fujiwarab M, Shimamotob K, Dokea N, Yoshiokac H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lachaud C, Prigent E, Thuleau P, Grat S, Silva DD, Brière C, Mazars C, Cotelle V (2013) 14-3-3-Regulated Ca2+-dependent protein kinase CPK3 is required for sphingolipid-induced cell death in Arabidopsis. Cell Death Differ 20:209–217

    Article  PubMed  CAS  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Li MY, Wang F, Jiang Q, Wang GL, Tan C, Xiong AS (2016) Validation and comparison of reference genes for qPCR normalization of celery (Apium graveolens) at different development stages. Front Plant Sci 7:313

    PubMed  PubMed Central  Google Scholar 

  • Liu GS, Chen J, Wang XC (2006) VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. Plant Cell and Environment 29:2091–2099

    Article  CAS  Google Scholar 

  • Liu W, Li W, He QL, Daud MK, Chen JH, Zhu SJ (2014) Genome-wide survey and expression analysis of calcium-dependent protein kinase in Gossypium raimondii. PLoS One 9:e98189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu XZ, Huang BR (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci 40:503–510

    Article  CAS  Google Scholar 

  • Liu ZW, Wu ZJ, Li XH, Huang Y, Li H, Wang YX, Zhuang J (2016) Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress. Gene 576:52–59

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Ma SY, Wu WH (2007) AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65:511–518

    Article  PubMed  CAS  Google Scholar 

  • Martin ML, Busconi L (2000) Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J 24:429–435

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Noel G, Nagaraj VJ, Calo G, Wiemken A, Pontis HG (2007) Sucrose regulated expression of a Ca2+-dependent protein kinase (TaCDPK1) gene in excised leaves of wheat. Plant Physiol Biochem 45:410–419

    Article  PubMed  CAS  Google Scholar 

  • Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    Article  PubMed  CAS  Google Scholar 

  • Matschi S, Hake K, Herde M, Hause B, Romeis T (2015) The calcium-dependent protein kinase CPK28 regulates development by inducing growth phase-specific, spatially restricted alterations in jasmonic acid levels independent of defense responses in Arabidopsis. Plant Cell 27:591–606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y (2011) The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol 155:553–561

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X (2008) CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21:639–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Singh VK, Suryanarayana V, Krishnamurthy L, Saxena RK, Varshney RK (2015) Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions. PLoS One 10:e0122847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis hsp70 gene family. Plant Physiol 126:789–800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szekely G et al (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  CAS  Google Scholar 

  • Tian C, Jiang Q, Wang F, Wang GL, Xu ZS, Xiong AS (2015) Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. PLoS One 10:e0117569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyaya H, Panda SK (2013) Abiotic stress responses in tea [Camellia sinensis L (O) Kuntze]: an overview. Rev Agric Sci 1:1–10

    Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1

    Article  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Wan BL, Lin YJ, Mou TM (2007) Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 581:1179–1189

    Article  PubMed  CAS  Google Scholar 

  • Wang CT, Shao JM (2012) Characterization of the ZmCK1 gene encoding a calcium-dependent protein kinase responsive to multiple abiotic stresses in maize. Plant Mol Biol Rep 31:222–230

    Article  CAS  Google Scholar 

  • Wang CT, Song W (2014) ZmCK3, a maize calcium-dependent protein kinase gene, endows tolerance to drought and heat stresses in transgenic Arabidopsis. J Plant Biochem Biotechnol 23:249–256

    Article  CAS  Google Scholar 

  • Wang LQ, Xu CX, Wang C, Wang YC (2012) Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance. BMC Plant Biol 12:1

    Article  CAS  Google Scholar 

  • Wang WD, Wang YH, Du YL, Zhao Z, Zhu XJ, Jiang X, Shu ZF, Yin Y, Li XH (2014) Overexpression of Camellia sinensis H1 histone gene confers abiotic stress tolerance in transgenic tobacco. Plant Cell Rep 33:1829–1841

    Article  PubMed  CAS  Google Scholar 

  • Wedegaertner PB, Wilson PT, Bourne HR (1995) Lipid modifications of trimeric G-proteins. J Biol Chem 270:503–506

    Article  PubMed  CAS  Google Scholar 

  • Wu ZJ, Li XH, Liu ZW, Xu ZS, Zhuang J (2014) De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis. BMC Plant Biol 14:277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu ZJ, Tian C, Jiang Q, Li XH, Zhuang J (2016) Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis). Sci Rep 6:19748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao F, Fu XY, Hou XL, Yao QH (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 232:1007–1007

    Article  CAS  Google Scholar 

  • Yamada N, Sakakibara S, Tsutsumi K, Waditee R, Tanaka Y, Takabe T (2011) Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet. J Plant Physiol 168:1609–1616

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Karlson D (2012) Effects of mutations in the Arabidopsis cold shock domain protein 3 (AtCSP3) gene on leaf cell expansion. J Exp Bot 63:4861–4873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang ZM, Chen Y, Hu BY, Tan ZQ, Huang BT (2015) Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses. PLoS One 10:e0119569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan L, Xiong LG, Deng TT, Wu Y, Li J, Liu SQ, Huang JA, Liu ZH (2015) Comparative profiling of gene expression in Camellia sinensis L. cultivar AnJiBaiCha leaves during periodic albinism. Gene 561:23–29

    Article  PubMed  CAS  Google Scholar 

  • Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Pokutta S, Maurer P, Lindt M, Franklin RM, Kappes B (1994) Calcium-binding properties of a calcium-dependent protein-kinase from Plasmodium falciparum and the significance of individual calcium-binding sites for kinase activation. Biochemistry 33:3714–3721

    Article  PubMed  CAS  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, Song LF, Zhang WZ, Wu WH (2015) Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27:1445–1460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH (2010) Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154:1232–1243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31470690), the earmarked fund for Modern Agro-industry Technology Research System (CARS-19), and the Fundamental Research Funds for the Central Universities (2662017QD036).

Author information

Authors and Affiliations

Authors

Contributions

MLW performed the experiments and drafted the manuscript. QHL helped in data collection, sample preparation, and RNA extraction. KS, XYZ, QQZ, and HL revised the language of the manuscript. XC contributed with valuable discussions. XHL managed and designed the research and experiments.

Corresponding author

Correspondence to Xinghui Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 1650 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, Q., Sun, K. et al. Involvement of CsCDPK20 and CsCDPK26 in Regulation of Thermotolerance in Tea Plant (Camellia sinensis). Plant Mol Biol Rep 36, 176–187 (2018). https://doi.org/10.1007/s11105-018-1068-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-018-1068-0

Keywords

Navigation