Skip to main content
Log in

AtCPK23 functions in Arabidopsis responses to drought and salt stresses

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Calcium-dependent protein kinases (CDPKs) are unique serine/threonine kinases in plants and there are 34 CDPKs in Arabidopsis genome alone. Although several CDPKs have been demonstrated to be critical calcium signaling mediators for plant responses to various environmental stresses, the biological functions of most CDPKs in stress signaling remain unclear. In this study, we provide the evidences to demonstrate that AtCPK23 plays important role in Arabidopsis responses to drought and salt stresses. The cpk23 mutant, a T-DNA insertion mutant for AtCPK23 gene, showed greatly enhanced tolerance to drought and salt stresses, while the AtCPK23 overexpression lines became more sensitive to drought and salt stresses and the complementary line of the cpk23 mutant displayed similar phenotype as wild-type plants. The results of stomatal aperture measurement showed that the disruption of AtCPK23 expression reduced stomatal apertures, while overexpression of AtCPK23 increased stomatal apertures. The alteration of stomatal apertures by changes in AtCPK23 expression may account, at least in partial, for the modified Arabidopsis response to drought stress. In consistent with the enhanced salt-tolerance by disruption of AtCPK23 expression, K+ content in the cpk23 mutant was not reduced under high NaCl stress compared with wild-type plants, which indicates that the AtCPK23 may also regulate plant K+-uptake. The possible mechanisms by which AtCPK23 mediates drought and salt stresses signaling are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aharoni A, Dixit S, Jetter R et al (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16: 2463–2480

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9:345–375

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  Google Scholar 

  • Boyer JS (1983) Environmental stress and crop yields. In: Raper CD, Kramer PJ (eds) Crop reactions to water and temperature stresses in humid, temperate climates. Westview Press, Boulder, CO, pp 3–7

    Google Scholar 

  • Chehab EW, Patharkar OR, Hegeman AD et al (2004) Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiol 135:1430–1446

    Article  PubMed  CAS  Google Scholar 

  • Cheng S-H, Sheen J, Gerrish C et al (2001) Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Lett 503:185–188

    Article  PubMed  CAS  Google Scholar 

  • Cheng SH, Willmann MR, Chen H et al (2002) Calcium signaling through protein kinases: the Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Park HJ, Park JH et al (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW et al (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG et al (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Haake V, Cook D, Riechmann JL et al (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  PubMed  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs: a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Sussman MR, Schaller GE et al (1991) A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252:951–954

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    Article  PubMed  CAS  Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M et al (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:1840–1848

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Charng Y et al (2002) Tomato plants ectopically expressing arabidopsis cbf1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Jakab G, Ton J, Flors V et al (2005) Enhancing arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139: 267–274

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S et al (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–325

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Li J, Lee YR, Assmann SM (1998) Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol 116:785–795

    Article  PubMed  CAS  Google Scholar 

  • Li X, Gong Z, Koiwa H et al. (2001). Bar-expressing peppermint (Mentha × Piperita L. var. Black Mitcham) plants are highly resistant to the glufosinate herbicide Liberty. Mol Breed 8:109–118

    Article  CAS  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M et al (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389-S400

    PubMed  CAS  Google Scholar 

  • Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  PubMed  CAS  Google Scholar 

  • Milla MAR, Uno Y, Chang IF et al (2006) A novel yeast two-hybrid approach to identify CDPK substrates: characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. FEBS Lett 580:904–911

    Article  CAS  Google Scholar 

  • Mori IC, Murata1 Y, Yang Y et al (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4:1749–1762

    Article  CAS  Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P et al (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374

    Article  PubMed  CAS  Google Scholar 

  • Roberts DM, Harmon AC (1992) Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 43:375–414

    Article  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J et al (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Kinoshita N, Ishiyama K et al (2001) A Ca2+-dependent protein kinase that endows rice plants with cold- and salt-stress tolerance functions in vascular bundles. Plant Cell Physiol 42:1228–1233

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J et al (2002) Monitoring the expression profiles of 7000 arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Shao JH, Harmon AC (2003) In vivo phosphorylation of a recombinant peptide substrate of CDPK suggests involvement of CDPK in plant stress responses. Plant Mol Biol 53:731–740

    Article  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Lee BH, Wu SJ et al (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Urao T, Katagiri T, Mizoguchi T et al (1994) Two genes that encode Ca2+-dependent protein-kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gene and Geno 244:331–340

    CAS  Google Scholar 

  • Wu SJ, Ding L, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B et al (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Xu J, Li HD, Chen LQ et al (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    Article  PubMed  CAS  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a competitive NSFC (National Science Foundation of China) Research Grant (#30421002) and the Chinese National Key Basic Research Project (#2006CB100100) to Wei-Hua Wu. We would like to thank Dr. Wei Zhang for technical assistance in stomatal aperture measurement and Mr. Junjie Zou for providing AtCPK23::GUS transgenic line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Hua Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, SY., Wu, WH. AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65, 511–518 (2007). https://doi.org/10.1007/s11103-007-9187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9187-2

Keywords

Navigation