Skip to main content

Advertisement

Log in

Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The selection and validation of reference genes constitute a key point for gene expression analysis based on qPCR, requiring efficient normalization approaches. In this work, the expression profiles of eight genes were evaluated to identify novel reference genes for transcriptional studies associated to the senescence process in sunflower. Three alternative strategies were applied for the evaluation of gene expression stability in leaves of different ages and exposed to different treatments affecting the senescence process: algorithms implemented in geNorm, BestKeeper software, and the fitting of a statistical linear mixed model (LMModel). The results show that geNorm suggested the use of all combined genes, although identifying α-TUB1 as the most stable expressing gene. BestKeeper revealed α-TUB and β-TUB as stable genes, scoring β-TUB as the most stable one. The statistical LMModel identified α-TUB, actin, PEP, and EF- as stable genes in this order. The model-based approximation allows not only the estimation of systematic changes in gene expression, but also the identification of sources of random variation through the estimation of variance components, considering the experimental design applied. Validation of α-TUB and EF- as reference genes for expression studies of three sunflower senescence associated genes showed that the first one was more stable for the assayed conditions. We conclude that, when biological replicates are available, LMModel allows a more reliable selection under the assayed conditions. This study represents the first analysis of identification and validation of genuine reference genes for use as internal control in qPCR expression studies in sunflower, experimentally validated throughout six different controlled leaf senescence conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification”. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Andersen C, Jensen J, Orntoft T (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biology 10:49

    Google Scholar 

  • Barsalobres-Cavallari C, Severino F, Maluf M, Maia I (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Molecular Biology 10(1):1

    Article  PubMed  Google Scholar 

  • Borrás M, Madonni G, Otegui M (2003) Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Res 82:13–26

    Article  Google Scholar 

  • Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology 4:14

    Google Scholar 

  • Buchanan-Wollaston V, Ainsworth C (1997) Leaf senescence in Brassica napus: cloning of senescence-related genes by subtractive hybridization. J Exp Bot 52:1117–1121

    Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomic approach. Plant Biotechnol J 1:3–22

    Article  CAS  PubMed  Google Scholar 

  • Bustin S (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  CAS  PubMed  Google Scholar 

  • Bustin S, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M, Shipley G, Vandesompele J, Wittwer C (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Google Scholar 

  • Chervoneva I, Li Y, Schulz S, Croker S, Wilson C, Waldman SA, Hyslop T (2010) Selection of optimal reference genes for normalization in quantitative RT-PCR. BMC Bioinformatics 11:253

  • Coker JS, Davies E (2003) Selection of candidate housekeeping controls in tomato plants using EST data. Biotechniques 35:740–748

    CAS  PubMed  Google Scholar 

  • Czechowski T, Bari R, Stitt M, Scheible W-R, Udvardi M (2004) Real-time RT-PCR profiling of over 1, 400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38:366–379

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi M, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  Google Scholar 

  • De Ketelaere A, Goossens K, Peelman L, Burvenich C (2006) Technical note: validation of internal control genes for gene expression analysis in bovine polymorphonuclear leukocytes. J Dairy Sci 89:4066–4069

    Article  PubMed  Google Scholar 

  • Dombrovski JE, Martin RC (2008) Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress. Plant Sci 176:390–396

    Article  Google Scholar 

  • Duarte Silveira E, Alves-Ferreira M, Arrais Guimaraes L, Rodrigues da Silva F, de Tavares Campos Carneiro V (2009) Selection of reference genes for quantitative real-time PCR expresssion studes in the apomictic and sexual grass Brachiaria brizantha. BMC Plant Biol 9:84

    Article  Google Scholar 

  • Exposito-Rodriguez M, Borges A, Borges-Perez A, Perez J (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:31

  • Fernandez P, Di Rienzo J, Fernandez L, Hopp H, Paniego N, Heinz RA (2008) Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biol 8:11

    Google Scholar 

  • Gan S (2003) Mitotic and postmitotic senescence in plants. Science’s SAGE KE

  • Gan S, Amasino RM (1997) Making sense of senescence. Plant Physiol 113:313–319

    CAS  PubMed  Google Scholar 

  • Gepstein S, Sabehi G, Carp M-J, Hajouj T, Nesher MFO, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Verdejo CI, Die JV, Nadal S, Jimenez-Marín A, Moreno MT, Román B (2008) Selection of housekeeping genes for normalization by real-time RT–PCR: analysis of Or-MYB1 gene expression in Orobanche ramosa development. Anal Biochem 379:38–43

    Google Scholar 

  • Guenin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60:487–493

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez N, Giménez MJ, Palomino C, Avila CM (2010) Assessment of candidate reference genes for expression studies in Vicia faba L. by real-time quantitative PCR. Mol Breed. doi:10.1007/s11032-010-9456-7

  • Hewezi T, Leger M, El Kayal W, Gentzbittel L (2006) Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity. J Exp Bot 57:3109–3122

    Article  CAS  PubMed  Google Scholar 

  • Huis R, Hawkins S, Neutelings G (2010) Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol 10:7

    Article  Google Scholar 

  • Jain M (2009) Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice. Plant Sci 176:702–706

    Article  CAS  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  CAS  PubMed  Google Scholar 

  • Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59

  • Kim B-R, Nam H-Y, Kim S-U, Kim S-I, Chang Y-J (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872

    Article  CAS  PubMed  Google Scholar 

  • Kuijk E, du Puy L, TA von Tol H, Haagsman H, Colenbrander P, Roelen B (2007) Validation of reference genes for quantitative RT-PCR studies in porcine oocytes and preimplantation embryos. BMC Dev Biol 7:58

    Google Scholar 

  • Lechner L, Pereyra Irujo G, Granier C, Aguirrezabal L (2008) Re-watering of plants under water deficit reveals that leaf cells retain their ability to expand after the leaf has apparently reached its final size. Ann Bot 101:1007–1015

    Article  PubMed  Google Scholar 

  • Libault M, Thibivilliers D, Bilgin D, Radwan O, Benitez M, Clough S, Stacey G (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genome 1:44–54

    Article  CAS  Google Scholar 

  • Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8:272–278

    Article  CAS  PubMed  Google Scholar 

  • Lim P, Kim H, Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lin YL, Lai ZX (2010) Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Sci 178:359–365

    Article  CAS  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lovdal T, Lillo C (2009) Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem 387:238–242

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Chen S, Wan H, Chen F, Gu C, Liu Z (2010) Candidate reference genes for gene expression studes in water lily. Anal Biochem. doi:10.1016/j.ab.2010.05.002

  • Mallona I, Lischewski S, Weiss J, Hause B, Egea-Cortines M (2010) Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol 10:4

    Google Scholar 

  • Maroufi A, Van Bockstaele E, De Loose M (2010) Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 11:15

    Google Scholar 

  • Martin R, Hollenbeck V, Dombrowski J (2008) Evaluation of Reference Genes for Quantitative RT-PCR in Lolium perenne. Crop Sci 48:1881–1887

    Article  CAS  Google Scholar 

  • Narsai R, Ivanova A, Ng S, Whelan J (2010) Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biol 10:56

    Article  PubMed  Google Scholar 

  • National Center for Biotechnology Information (NCBI) (http://blast.ncbi.nlm.nih.gov/)

  • National Sunflower Association [http://www.sunflowernsa.com/stats/table.asp?contentID=109&htmlID=74&submit170=View&submit.x=57&submit.y=12)]

  • Nicot N, Hausman J-F, Hoffman L, Evers D (2005) Housekeeping gene selection for real-time PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Olbrich M, Gerstner E, Welzl G, Fleischmann F, Obwald W, Bahnweg G, Ernst D (2008) Quantification of mRNAs and housekeeping gene selection for quantitative real-time RT-PCR normalization in European Beech (Fagus sylvatica L.) during abiotic and biotic stress. Z Naturforsch C 63:574–582

    CAS  PubMed  Google Scholar 

  • Pabinger S, Thallinger G, Snajder R, Eichjorn H, Rader R, Trajanoski Z (2009) QPCR: application for real-time PCR data management and analysis. BMC Bioinformatics 10:268

    Article  PubMed  Google Scholar 

  • Paolacci A, Tanzarella O, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11

    Article  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Res 29:e45

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl M, Tichopád A, Prgomet C, Neuvians T (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Google Scholar 

  • Pic E, Teyssandier de la Serve B, Tardieu F, Turc O (2002) Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea. Plant Physiol 128:236–246

    Article  CAS  PubMed  Google Scholar 

  • Pommel B, Gallais A, Coque M, Quelleré I, Hirel B, Prioul J, Andrieu B, Floriot M (2006) Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur J Agron 24:203–211

    Article  CAS  Google Scholar 

  • Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32:496–501

    Article  CAS  PubMed  Google Scholar 

  • Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862

    Article  CAS  PubMed  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27

    Google Scholar 

  • Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227(6):1343–1349. doi:10.1007/s00425-008-0706-4

    Google Scholar 

  • Sadras V, Echarte L, Andrade F (2000) Profiles of leaf senescence during reproductive growth of sunflower and maize. Ann Bot 85:187–195

    Article  Google Scholar 

  • Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283:233–241

    Article  CAS  PubMed  Google Scholar 

  • Scholdberg TA, Norden TD, Nelson DD, Ronald Jenkins G (2009) Evaluating precision and accuracy when quantifying different endogenous control reference genes in maize using real-time PCR. J Agric Food Chem 57:2903–2911

    Article  CAS  PubMed  Google Scholar 

  • Spanakis E (1993) Problems related to the interpretation of autoradiographic data on gene expression using common constitutive transcripts as controls. Nucleic Acids Res 21:3809–3819

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337

    CAS  PubMed  Google Scholar 

  • Szabo A, Perou CM, Karaca M, Perreard L, Quackenbush JF, Bernard PS (2004) Statistical modeling for selecting housekeeper genes. Genome Biology 5:R59

    Google Scholar 

  • The Dana Farber Cancer Institute Sunflower Gene Index Project (http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=sunflower)

  • Thorrez L, Van Deun K, Tranchevent LC, Van Lommel L, Engelen K, Marchal K, Moreau Y, Van Mechelen I, Schuit F (2008) Using ribosomal protein genes as reference: a tale of caution. PLoS One 3:e1854

    Article  PubMed  Google Scholar 

  • Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71

    Article  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3(7):RESEARCH0034

    Google Scholar 

  • Wan H, Zhao Z, Qian C, Sui Y, Malik A, Chen J (2009) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem. doi:10.1016/j.ab.2009.12.008

  • Weaver M, Amasino R (2001) Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol 127:876–886

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Hou S, Cui G, Chen S, Wei J, Huang L (2010) Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza. Mol Biol Rep 37:507–513

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by CONICET PIP 5788, ANPCyT/FONCYT, Préstamo BID PICT 15-32905, INTA-PE AEBIO 241001and 245001, INTA-PE AEBIO 245711, INTA-AEBI0 243532, INTA PN CER 1336, and UNMdP, AGR212, AGR260. Dr. PdCF, Dr. RAH, Dr. NBP, Dr. GAAD, and Dr. LANA are career members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), J.A.D.R., M.Sc., is a Professor at the Agricultural College in National University of Cordoba and Dr. HEH is a career member of the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC) and a Professor at the Facultad de Ciencias Exactas y Naturales, University of Buenos Aires (UBA). We are grateful to Dr. Marisa Farber for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paula Fernandez or Ruth A. Heinz.

Additional information

Communicated by M. Jordan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, P., Di Rienzo, J.A., Moschen, S. et al. Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis. Plant Cell Rep 30, 63–74 (2011). https://doi.org/10.1007/s00299-010-0944-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0944-3

Keywords

Navigation