Skip to main content
Log in

Molecular characterization of Fagaceae species using inter-primer binding site (iPBS) markers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Retrotransposons (RTNs) contribute for genome evolution, influencing its size and structure. We investigated the utility of the RTN-based markers inter-primer binding site (iPBS) for the molecular characterization of 25 Fagaceae species from genera Castanea, Fagus and Quercus. The assessment of genetic diversity, relationships and structure, as well as taxonomic classification of Fagaceae based on molecular data is important for definition of conservation, forestry management strategies and discrimination among natural hybrids and their parents since natural hybridization may increase with the climate changes. Here, iPBS primers designed by other authors were tested alone and combined. Some of them were discriminative, revealed polymorphism within and among taxa allowing the production of a total of 150 iPBS markers. In addition, several monomorphic iPBS markers were also amplified in each taxon. The UPGMA dendrogram based on the pooled iPBS data revealed 27% of genetic similarity among species. The individuals were clustered per genus and most of the oaks per infrageneric group corroborating the adopted taxonomy. Globally, the iPBS markers demonstrated suitability for DNA fingerprinting, determination of phylogenies and taxonomic discrimination in Fagaceae, and could constitute a useful and alternative tool for germplasm characterization, and for definition of conservation strategies and forestry management. Moreover, these markers would be useful for fingerprinting natural hybrids that share morphological similarities with their parents. Since iPBS markers could also enable insights about RTNs evolution, an eventual correlation among iPBS polymorphism, variability of RTN insertions and/or genome size in Fagaceae is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479:532

    Article  CAS  PubMed  Google Scholar 

  2. Sabot F, Simon D, Bernard M (2004) Plant transposable elements, with an emphasis on grass species. Euphytica 139:227–247

    Article  CAS  Google Scholar 

  3. Zedek F, Smerda J, Smarda P, Bures P (2010) Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biol 10:265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Emiliani G, Paffetti D, Giannini R (2008) Identification and molecular characterization of LTR and LINE retrotransposable elements in Fagus sylvatica L. iForest 2:119–126

    Article  Google Scholar 

  5. Alves S, Ribeiro T, Inácio V, Rocheta M, Morais-Cecílio L (2012) Genomic organization and dynamics of repetitive DNA sequences in representatives of three Fagaceae genera. Genome 55:348–359

    Article  CAS  PubMed  Google Scholar 

  6. Kremer A, Casasoli M, Barreneche T et al (2007) Fagaceae trees. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 7. Springer, Berlin, pp 161–187

    Google Scholar 

  7. Rocheta M, Carvalho L, Viegas W, Morais-Cecílio L (2012) Corky, a gypsy-like retrotransposon is differentially transcribed in Quercus suber tissues. BMC Res Notes 5:432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qing-Qin C, Yi-Chen J, Xing-Liang L, Yuan-Yue S, Yu X, Ke-Feng F, Qing Z, Yanyan Z, Ling Q (2014) CmRT1, a Ty3-gypsy-like retrotransposon in Castanea mollissima, is associated with a short-catkin mutation. J Hortic Sci Biotechnol 89:726–732

    Article  Google Scholar 

  9. Carvalho M, Ribeiro T, Viegas W, Morais-Cecílio L, Rocheta M (2010) Presence of env-like sequences in Quercus suber retrotransposons. J Appl Genet 51:461–467

    Article  CAS  PubMed  Google Scholar 

  10. Rohde J (1996) A novel PCR-based DNA marker technology called inverse sequence tagged repeat (ISTR) analysis. J Genet Breed 50:249–261

    CAS  Google Scholar 

  11. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  CAS  PubMed  Google Scholar 

  12. Flavell A, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  CAS  PubMed  Google Scholar 

  13. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  14. Kalendar R, Antonius K, Smýkal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121:1419–1430

    Article  CAS  PubMed  Google Scholar 

  15. Seibt KM, Wenke T, Wollrab C, Junghans H, Muders K, Dehmer KJ, Diekmann K, Schmidt T (2012) Development and application of SINE-based markers for genotyping of potato varieties. Theor Appl Genet 125:185–196

    Article  CAS  PubMed  Google Scholar 

  16. Biswas MK, Chai L, Qiang X, Deng X (2012) Generation, functional analysis and utility of Citrus grandis EST from a flower-derived cDNA library. Mol Biol Rep 39:7221–7235

    Article  CAS  PubMed  Google Scholar 

  17. Alikhani L, Rahmani M-S, Shabanian N, Badakhshan H, Khadivi-Khub A (2014) Genetic variability and structure of Quercus brantii assessed by ISSR, IRAP and SCoT markers. Gene 552:176–183

    Article  CAS  PubMed  Google Scholar 

  18. Rahmani M-S, Alikhani L, Shabanian N, Khadivi-Khub A (2015) Genetic differentiation in Quercus infectoria from northwest of Iran revealed by different nuclear markers. Tree Genet Genomes 11:800

    Article  Google Scholar 

  19. Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225

    Article  PubMed  PubMed Central  Google Scholar 

  20. Monden Y, Yamaguchi K, Tahara M (2014) Application of iPBS in high-throughput sequencing for the development of retrotransposon-based molecular markers. Curr Plant Biol 1:40–44

    Article  Google Scholar 

  21. Gailīte A, Ievinsh G, Ruņģis D (2011) Genetic diversity analysis of Latvian and Estonian Saussurea esthonica populations. Environ Exp Bot 9:115–119

    Google Scholar 

  22. Da-Long G, Ming-Xiao G, Xiao-Gai H, Guo-Hai Z (2014) Molecular diversity analysis of grape varieties based on iPBS markers. Biochem Syst Ecol 52:27–32

    Article  Google Scholar 

  23. Pourmahdi A, Taheri P (2015) Genetic diversity of Thanatephorus cucumeris infecting tomato in Iran. J Phytopathol 163:19–32

    Article  CAS  Google Scholar 

  24. Baloch FS, Derya M, Andeden EE, Alsaleh A, Cömertpay G, Kilian B, Özkan H (2015) Inter-primer binding site retrotranspososn and inter-simple sequence repeat diversity among wild Lens species. Biochem Syst Ecol 58:162–168

    Article  CAS  Google Scholar 

  25. Fang-Yong C, Ji-Hong L (2014) Germplasm genetic diversity of Myrica rubra in Zhejiang Province studied using inter-primer binding site and start codon-targeted polymorphism markers. Sci Hortic 170:169–175

    Article  Google Scholar 

  26. Kartal-Alacam G, Yilmaz S, Marakli S, Gozukirmizi N (2014) Sukkula retrotransposon insertion polymorphisms in barley. Russ J Plant Physiol 61:828–833

    Article  CAS  Google Scholar 

  27. Nakatsuka T, Yamada E, Saito M, Hikage T, Ushiku Y, Nishihara M (2012) Construction of the first genetic linkage map of Japanese gentian (Gentianaceae). BMC Genom 13:672

    Article  CAS  Google Scholar 

  28. Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  30. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1999) POPGENE Version 1.32, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton

    Google Scholar 

  31. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individual. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lewontin RC (1972) Testing the theory of natural selection. Nature 236:181–182

    Article  Google Scholar 

  33. Rohlf FJ (1998) NTSYS-pc ver. 2.02. Numerical taxonomy and multivariate analysis system. Exeter Publishing, Setauket

    Google Scholar 

  34. Yap IV, Nelson RJ (1996) WinBoot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrogram. Discussion Paper Series 14. International Rice Research Institute, Manila

  35. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pritchard JK, Wen X, Falush D (2010) Documentation for STRUCTURE software: version 2.3. University of Chicago. http://pritchardlab.stanford.edu/structure_software/release_versions/v2.3.4/ structure_doc.pdf. Accessed 5 Mar 2015

  37. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  38. Si-Chong C, Cannon CH, Chai-Shian K, Jia-Jia L, Galbraith DW (2014) Genome size variation in the Fagaceae and its implications for trees. Tree Genet Genomes 10:977–988

    Article  Google Scholar 

  39. Coutinho JP, Carvalho A, Lima-Brito J (2014) Genetic diversity assessment and estimation of phylogenetic relationships among 26 Fagaceae species using ISSRs. Biochem Syst Ecol 54:247–256

    Article  CAS  Google Scholar 

  40. Coutinho JP, Carvalho A, Lima-Brito J (2015) Taxonomic and ecological discrimination of Fagaceae species based on internal transcribed spacer polymerase chain reaction-restriction fragment length polymorphism. AoB PLANTS 7. plu079

    Article  Google Scholar 

  41. Coutinho JP, Carvalho A, Martín A, Ribeiro T, Morais-Cecílio L, Lima-Brito J (2016) Oak ribosomal DNA: characterization by FISH and polymorphism assessed by IGS PCR-RFLP. Plant Syst Evol 302:527–544

    Article  CAS  Google Scholar 

  42. Samuel R, Bachmair A, Jobst J, Ehrendorfer F (1998) ITS sequences from nuclear rDNA suggest unexpected phylogenetic relationships between Euro-Mediterranean, East Asiatic and North American taxa of Quercus (Fagaceae). Plant Syst Evol 211:129–139

    Article  CAS  Google Scholar 

  43. Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351–366

    Google Scholar 

  44. Kremer A, Abbott AG, Carlson JE, Manos PS, Plomion C, Sisco P, Staton ME, Ueno S, Vendramin GG (2012) Genomics of Fagaceae. Tree Genet Genomes 8:583–610

    Article  Google Scholar 

  45. Bellarosa R, Simeone MC, Papini A, Schirone B (2005) Utility of ITS sequence data for phylogenetic reconstruction of Italian Quercus spp. Mol Phylogenet Evol 34:355–370

    Article  CAS  PubMed  Google Scholar 

  46. Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol 12:333–349

    Article  CAS  PubMed  Google Scholar 

  47. Guang-Chen F, Blackmon BP, Staton ME et al (2013) A physical map of the Chinese chestnut (Castanea mollissima) genome and its integration with the genetic map. Tree Genet Genomes 9:525–537

    Article  Google Scholar 

  48. Plomion C, Aury JM, Amselem J, Alaeitabar T et al (2016) Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Mol Ecol Resour 16:254–265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author João Coutinho acknowledges to the “Fundação para a Ciência e a Tecnologia” (FCT) for his Ph.D. grant SFRH/BD/42837/2008, co-financed by the “Fundo Social Europeu” (FSE) under the “Programa Operacional Potencial Humano” (POPH)—“Quadro de Referência Estratégico Nacional 2007–2013” (QREN). The authors thank the botanical gardens that kindly provided the seeds used in this work.

Funding

The “Fundação para a Ciência e a Tecnologia” (FCT) attributed to the author João Coutinho the Ph.D. grant SFRH/BD/42837/2008, co-financed by the “Fundo Social Europeu” (FSE) under the “Programa Operacional Potencial Humano” (POPH)—“Quadro de Referência Estratégico Nacional 2007–2013” (QREN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Lima-Brito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutinho, J.P., Carvalho, A., Martín, A. et al. Molecular characterization of Fagaceae species using inter-primer binding site (iPBS) markers. Mol Biol Rep 45, 133–142 (2018). https://doi.org/10.1007/s11033-018-4146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4146-3

Keywords

Navigation