Skip to main content
Log in

Generation, functional analysis and utility of Citrus grandis EST from a flower-derived cDNA library

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pummelo (Citrus grandis) is one of the most important species found in the genus Citrus and one of the ancestors of sweet oranges. We used flower buds at different developmental stages to construct the first cDNA library for this species. A total of 3,758 EST sequences were generated from the cDNA library and clustered into 2,228 unigenes, comprising 451 contigs and 1,777 singletons. Among these unigene sequences, 1,266 have significant homology to the non-redundant protein database, from which 891 were assigned to one or more gene ontology categories. Functional categorization of the annotated unigenes showed that 760 genes were involved in molecular function, 1,189 in biological processes and 1,154 in cellular component categorization. Homologs of genes regulating many aspects of flower development were also identified, including those for organ development, cell-cycle control and cell and tissue differentiation. The majority of these genes (e.g., embryo relatives, YABBY-like, MAD Box, SKP-like and SRNAs) are the first representatives in Citrus, providing an opportunity to explore the cause of self incompatibility and embryo development in Citrus. Patterns of transcript accumulation were characterized by real-time qPCR for 13 of these genes. Many potential molecular markers were also identified in this EST data set; 212 Simple Sequences Repeats (SSRs), 717 transposon elements and 115 candidate single nucleotide polymorphisms (SNPs) were found. An assessment of a set of 212 SSR primer pairs on 16 citrus genotypes showed polymorphism with 122 (57.82%) markers. Similarly, a set of eight contigs were used to confirm in silico predicated SNPs in a set of five genotypes using wet lab experiments, three contigs were generated as scorable and sequenceable amplicons and no PCR amplicons were obtained from five contigs. The outcome of this study could aid in the discovery of genes involved in reproductive developments. Identified candidate genes can be experimentally tested for their functions in various important processes. SSR, SNP and transposon element-containing data sets may facilitate marker development and can be used for citrus molecular breeding, linkage map construction, evolutionary, phylogenetic and population genetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scora RW (1975) On the history and origin of Citrus. Bull Torrey Bot Club 102:369–375

    Article  Google Scholar 

  2. Paudyal KP, Haq N (2008) Variation of pomelo (Citrus grandis (L.) Osbeck) in Nepal and participatory selection of strains for further improvement. Agrofor Syst 72:195–204

    Article  Google Scholar 

  3. Talon T, Gmitter FG (2008) Citrus genomics. Int J Plant Genomics 2008:17

    Google Scholar 

  4. Gonzalez-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Pico B, Truniger V, Gomez P, Deleu W, Cano-Delgado A, Arus P, Nuez F, Garcia-Mas J, Puigdomenech P, Aranda M (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306

    Article  PubMed  Google Scholar 

  5. Alba R, Fei Z, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D’Ascenzo M, Gordon JS, Rose JK, Martin G, Tanksley SD, Bouzayen M, Jahn MM, Giovannoni J (2004) ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J 39:697–714

    Article  PubMed  CAS  Google Scholar 

  6. Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8:321–329

    Article  PubMed  CAS  Google Scholar 

  7. NCBI’ EST http://www.ncbi.nlm.nih.gov/nucest/?term=Citrus

  8. Liu YZ, Liu Q, Tao NG, Deng XX (2006) Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (Citrus sinensis Osbeck). J Huazhong Agric Univ 25:300–304

    CAS  Google Scholar 

  9. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  10. McInerney JO (1998) GCUA: general codon usage analysis. Bioinformatics 14:372–373

    Article  PubMed  CAS  Google Scholar 

  11. Min XJ, Butler G, Storms R, Tsang A (2005) OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res 33:W677–W680

    Article  PubMed  CAS  Google Scholar 

  12. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  13. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  14. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  15. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  PubMed  CAS  Google Scholar 

  16. Labarga A, Valentin F, Anderson M, Lopez R (2007) Web services at the European bioinformatics institute. Nucleic Acids Res 35:W6–W11

    Article  PubMed  Google Scholar 

  17. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  18. Biswas MK, Xu Q, Deng XX (2010) Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Sci Hortic 124:254–261

    Article  CAS  Google Scholar 

  19. Lindqvist C, Scheen A-C, Yoo M-J, Grey P, Oppenheimer D, Leebens-Mack J, Soltis D, Soltis P, Albert V (2006) An expressed sequence tag (EST) library from developing fruits of an Hawaiian endemic mint (Stenogyne rugosa, Lamiaceae): characterization and microsatellite markers. BMC Plant Biol 6:16

    Article  PubMed  Google Scholar 

  20. Terol J, Conesa A, Colmenero J, Cercos M, Tadeo F, Agusti J, Alos E, Andres F, Soler G, Brumos J, Iglesias D, Gotz S, Legaz F, Argout X, Courtois B, Ollitrault P, Dossat C, Wincker P, Morillon R, Talon M (2007) Analysis of 13,000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics 8:31

    Article  PubMed  Google Scholar 

  21. Rotter D, Bharti AK, Li HM, Luo C, Bonos SA, Bughrara S, Jung G, Messing J, Meyer WA, Rudd S, Warnke SE, Belanger FC (2007) Analysis of EST sequences suggests recent origin of allotetraploid colonial and creeping bentgrasses. Mol Genet Genomics 278:197–209

    Article  PubMed  CAS  Google Scholar 

  22. Liang H, Carlson J, Leebens-Mack J, Wall P, Mueller L, Buzgo M, Landherr L, Hu Y, DiLoreto D, Ilut D, Field D, Tanksley S, Ma H, dePamphilis C (2008) An EST database for Liriodendron tulipifera L. floral buds: the first EST resource for functional and comparative genomics in Liriodendron. Tree Genet Genomes 4:419–433

    Article  Google Scholar 

  23. Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Lindvall JJ, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlen M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA 101:13951–13956

    Article  PubMed  Google Scholar 

  24. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  25. Bruno AK, Wetzel CM (2004) The early light-inducible protein (ELIP) gene is expressed during the chloroplast-to-chromoplast transition in ripening tomato fruit. J Exp Bot 55:2541–2548

    Article  PubMed  CAS  Google Scholar 

  26. Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  PubMed  CAS  Google Scholar 

  27. Callis J, Vierstra RD (2000) Protein degradation in signaling. Curr Opin Plant Biol 3:381–386

    Article  PubMed  CAS  Google Scholar 

  28. Lund PK, Moats-Staats BM, Simmons JG, Hoyt E, D’Ercole AJ, Martin F, Van Wyk JJ (1985) Nucleotide sequence analysis of a cDNA encoding human ubiquitin reveals that ubiquitin is synthesized as a precursor. J Biol Chem 260:7609–7613

    PubMed  CAS  Google Scholar 

  29. Ozkaynak E, Finley D, Solomon MJ, Varshavsky A (1987) The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6:1429–1439

    PubMed  CAS  Google Scholar 

  30. Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem 265:12486–12493

    PubMed  CAS  Google Scholar 

  31. Garbarino JE, Belknap WR (1994) Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol Biol 24:119–127

    Article  PubMed  CAS  Google Scholar 

  32. Hanania U, Velcheva M, Sahar N, Flaishman M, Or E, Degani O, Perl A (2009) The ubiquitin extension protein S27a is differentially expressed in developing flower organs of Thompson seedless versus Thompson seeded grape isogenic clones. Plant Cell Rep 28:1033–1042

    Article  PubMed  CAS  Google Scholar 

  33. Dhanaraj AL, Slovin JP, Rowland LJ (2004) Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci 166:863–872

    Article  CAS  Google Scholar 

  34. Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    Article  PubMed  CAS  Google Scholar 

  35. Chai L, Ge X, Biswas MK, Deng X (2011) Molecular analysis and expression of a floral organ-relative F-box gene isolated from ‘Zigui shatian’ pummelo (Citrus grandis Osbeck). Mol Biol Rep 38:4429–4436

    Google Scholar 

  36. Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  CAS  Google Scholar 

  37. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  PubMed  CAS  Google Scholar 

  38. Cheng Y, Kato N, Wang W, Li J, Chen X (2003) Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev Cell 4:53–66

    Article  PubMed  CAS  Google Scholar 

  39. Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65:1150–1160

    Article  PubMed  CAS  Google Scholar 

  40. Huang F, Chi Y, Meng Q, Gai J, Yu D (2006) GmZFP1 encoding a single zinc finger protein is expressed with enhancement in reproductive organs and late seed development in soybean (Glycine max). Mol Biol Rep 33:279–285

    Article  PubMed  CAS  Google Scholar 

  41. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27:29–34

    Article  PubMed  CAS  Google Scholar 

  42. Terol J, Naranjo MA, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genomics 9:423

    Article  PubMed  Google Scholar 

  43. Jiang D, Zhong GY, Hong QB (2006) Analysis of microsatellites in citrus unigenes. Yi Chuan Xue Bao 33:345–353

    PubMed  CAS  Google Scholar 

  44. Chen C, Zhou P, Choi YA, Huang S, Gmitter FG Jr (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112:1248–1257

    Article  PubMed  CAS  Google Scholar 

  45. Luro F, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics 9:287

    Article  PubMed  Google Scholar 

  46. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  47. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EH, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJ, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  Google Scholar 

  48. Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91

    Article  PubMed  CAS  Google Scholar 

  49. Dantec LL, Chagne D, Pot D, Cantin O, Garnier-Gere P, Bedon F, Frigerio JM, Chaumeil P, Leger P, Garcia V, Laigret F, De Daruvar A, Plomion C (2004) Automated SNP detection in expressed sequence tags: statistical considerations and application to maritime pine sequences. Plant Mol Biol 54:461–470

    Article  PubMed  Google Scholar 

  50. Lopez C, Piegu B, Cooke R, Delseny M, Tohme J, Verdier V (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet 110:425–431

    Article  PubMed  CAS  Google Scholar 

  51. Chagne D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EH, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358

    Article  PubMed  CAS  Google Scholar 

  52. Cogan NO, Ponting RC, Vecchies AC, Drayton MC, George J, Dracatos PM, Dobrowolski MP, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW (2006) Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 276:101–112

    Article  PubMed  CAS  Google Scholar 

  53. Kimchi-Sarfaty C, Oh JM, Kim I-W, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A “Silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  PubMed  CAS  Google Scholar 

  54. Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MI, Henrique-Silva F, Giglioti EA, Lemos MV, Coutinho LL, Nobrega MP, Carrer H, Franca SC, Bacci M Jr, Goldman MH, Gomes SL, Nunes LR, Camargo LE, Siqueira WJ, Van Sluys MA, Thiemann OH, Kuramae EE, Santelli RV, Marino CL, Targon ML, Ferro JA, Silveira HC, Marini DC, Lemos EG, Monteiro-Vitorello CB, Tambor JH, Carraro DM, Roberto PG, Martins VG, Goldman GH, de Oliveira RC, Truffi D, Colombo CA, Rossi M, de Araujo PG, Sculaccio SA, Angella A, Lima MM, De Rosa VE Jr, Siviero F, Coscrato VE, Machado MA, Grivet L, Di Mauro SM, Nobrega FG, Menck CF, Braga MD, Telles GP, Cara FA, Pedrosa G, Meidanis J, Arruda P (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735

    Article  PubMed  Google Scholar 

  55. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. TAG Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  56. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Science and Technology of China (Nos.2011CB100601, 2011AA100205) and the National Natural Science Foundation of China (No.30921002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuxin Deng.

Additional information

Manosh Kumar Biswas and Lijun Chai have contributted equally to this article

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, M.K., Chai, L., Qiang, X. et al. Generation, functional analysis and utility of Citrus grandis EST from a flower-derived cDNA library. Mol Biol Rep 39, 7221–7235 (2012). https://doi.org/10.1007/s11033-012-1553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1553-8

Keywords

Navigation