Skip to main content
Log in

Recent advances on SnBi low-temperature solder for electronic interconnections

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnBi lead-free solder is widely applied in the field of low-temperature soldering due to its excellent creep resistance, relatively low melting point (139 °C) and cost. However, the frangibility and poor ductility of the SnBi low-temperature solder limits its application in the field of electronic packaging. In this paper, the research progress and development direction of SnBi low-temperature lead-free solder are discussed. To promote the application of SnBi solder, the melting characteristics, wettability, microstructure, tensile properties, shear properties, creep properties and interfacial reaction of SnBi solder are analyzed and introduced systematically. It provides an important reference of understanding the current development of SnBi solders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. H. Chen, L. Wang, J. Han et al., Microstructure, orientation and damage evolution in SnPb, SnAgCu, and mixed solder interconnects under thermomechanical stress. Microelectron. Eng. 96, 82–91 (2012)

    Article  CAS  Google Scholar 

  2. A. Nabihah, M.S. Nurulakmal, Effect of In Addition on Microstructure, Wettability and Strength of SnCu Solder. Mater. Today 17, 803–809 (2019)

    CAS  Google Scholar 

  3. F.Y. Ouyang, G.L. Hong, Y.R. Hsu et al., Thermomigration in Co/SnAg/Co and Cu/SnAg/Co sandwich structure. Microelectron. Reliab. 97, 16–23 (2019)

    Article  CAS  Google Scholar 

  4. H.Z. Wang, X.W. Hu, X.X. Jiang et al., Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn-3.0Ag-0.5Cu composite solder joints. Mater. Charact. 163, 110287 (2020)

    Article  CAS  Google Scholar 

  5. L. Liu, S.B. Xue, S.Y. Liu, Mechanical property of Sn-58Bi solder paste strengthened by resin. Appl. Sci. 8(11), 8112024 (2018)

    Google Scholar 

  6. L.F. Hu, Y.Z. Xue, H. Wang, Glass-Cu joining by anodic bonding and soldering with eutectic Sn-9Zn solder. J. Alloy Compd. 19, 30179 (2019)

    Google Scholar 

  7. B.Y. Han, F.L. Sun, T.H. Li et al., Microstructure evolution of Au/SnSb-CuNiAg/(Au)Ni during high temperature aging. Solder. Surf. Mount Technol. 32(2), 57–64 (2019)

    Article  Google Scholar 

  8. P. Zhang, S.B. Xue, J.H. Wang, New challenges of miniaturization of electronic devices: electromigration and thermomigration in lead-free solder joints. Mater. Des. 192, 108726 (2020)

    Article  CAS  Google Scholar 

  9. L. Shen, A.Q. Foo, S. Wang et al., Enhancing creep resistance of SnBi solder alloy with non-reactive nano fillers: a study using nanoindentation. J. Alloy Compd. 729, 498–506 (2017)

    Article  CAS  Google Scholar 

  10. N. Jiang, L. Zhang, M.Y. Xiong et al., Research progress on lead-free soldering technology for electronic packaging. Mater. Rep. 33(12), 3862–3875 (2019)

    Google Scholar 

  11. X. Wang, Y.C. Liu, Z.M. Gao, Effect of Bi content on spalling behavior of Sn-Bi-Zn-Ag/Cu interface. J. Mater. Sci.: Mater. Electron. 22, 14–19 (2011)

    Google Scholar 

  12. S.Q. Zhou, C.H. Yang, S.K. Lin et al., Effects of Ti addition on the microstructure, mechanical properties and electrical resistivity of eutectic Sn58Bi alloy. Mater. Sci. Eng. A 744, 560–569 (2019)

    Article  CAS  Google Scholar 

  13. N. Jiang, L. Zhang, Z.Q. Liu et al., Influences of doping Ti nanoparticles on microstructure and properties of Sn58Bi solder. J. Mater. Sci.: Mater. Electron. 30(19), 17583–17590 (2019)

    CAS  Google Scholar 

  14. S. Amares, M.N.E. Efzan, R. Durairaj, et al., Influence of Nano-3%Al 2 O 3 on the Properties of Low Temperature Sn-58Bi (SB) Lead-free Solder Alloy. In Materials Science and Engineering Conference Series. Materials Science and Engineering Conference Series (2017)

  15. M.A.A.M. Salleh, A.M.M.A. Bakri, M.H. Hazizi et al., Mechanical properties of Sn-0.7Cu/Si3N4 lead-free composite solder. Mater. Sci. Eng. A 556, 633–637 (2012)

    Article  CAS  Google Scholar 

  16. C. Zhang, S.D. Liu, G.T. Qian et al., Effect of Sb content on properties of Sn-Bi solders. Chin. J. Nonferrous Met. 24, 184–191 (2014)

    Article  CAS  Google Scholar 

  17. X.J. Wang, Y.L. Wang, F.J. Wang et al., Effects of Zn, Zn-Al and Zn-P additions on the tensile properties of Sn-Bi solder. Acta Metall. Sin. 27(6), 1159–1164 (2014)

    Article  CAS  Google Scholar 

  18. J. Shen, Y. Pu, H. Yin et al., Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn-Bi-based solder alloys. J. Alloy Compd. 614, 63–70 (2014)

    Article  CAS  Google Scholar 

  19. A.A. El-Dalya, Y. Swilema, M.H. Makledb et al., Thermal and mechanical properties of Sn-Zn-Bi lead-free solder alloys. J. Alloy Compd. 484, 134–142 (2009)

    Article  CAS  Google Scholar 

  20. S.T. Oh, J.H. Lee, Microstructural, wetting, and mechanical characteristics of Sn-57.6Bi-0.4Ag alloys doped with metal-organic compounds. Electron. Mater. Lett. 10(2), 473–478 (2014)

    Article  CAS  Google Scholar 

  21. R.M. Shalaby, Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi-Sn based lead-free solder alloys. Mater. Sci. Eng. A 560, 86–95 (2013)

    Article  CAS  Google Scholar 

  22. Y.Y. Shiue, T.H. Chuang, Effect of La addition on the interfacial intermetallics and bonding strengths of Sn-58Bi solder joints with Au/Ni/Cu pads. J. Alloy Compd. 491(1–2), 610–617 (2010)

    Article  CAS  Google Scholar 

  23. W.X. Dong, Y.W. Shi, Z. Xia et al., Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy. J. Electron. Mater. 37(7), 982–991 (2008)

    Article  CAS  Google Scholar 

  24. T.H. Chuang, H.F. Wu, Effects of Ce addition on the microstructure and mechanical properties of Sn-58Bi solder joints. J. Electron. Mater. 40(1), 71–77 (2011)

    Article  CAS  Google Scholar 

  25. Zhang L, Sun L, Guo Y H. Microstructures and properties of Sn58Bi, Sn35Bi0.3Ag, Sn35Bi1.0Ag solder and solder joints. Journal of Materials Science: Materials in Electronics, 2015, 26(10):7629 – 7634.

  26. He P, An J, M X, et al. Investigation preparation method and soldering behaviors of Sn-58Bi lead-free solder with carbon nanotubes. Transactions of The China Welding Institution, 2011, 32(9):9–12.

  27. X. Chen, F. Xue, J. Zhou et al., Effect of In on microstructure, thermodynamic characteristic and mechanical properties of Sn-Bi based lead-free solder. J. Alloy Compd. 633, 377–383 (2015)

    Article  CAS  Google Scholar 

  28. Q. Li, N.S. Ma, Y.P. Lei et al., Characterization of low-melting-point Sn-Bi-In lead-free solders. J. Electron. Mater. 45(11), 5800–5810 (2016)

    Article  CAS  Google Scholar 

  29. M.Y. Xiong, L. Zhang, Interface reaction and intermetallic compound growth behavior of Sn-Ag-Cu lead-free solder joints on different substrates in electronic packaging. J. Mater. Sci. 54, 1741–1768 (2019)

    Article  CAS  Google Scholar 

  30. L. Sun, M.H. Chen, L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloy Compd. 786, 677–687 (2019)

    Article  CAS  Google Scholar 

  31. S.K. Ghosh, A.S.M.A. Haseeb, A. Afifi, Effects of metallic nanoparticle doped flux on interfacial intermetallic compounds between Sn-3.0Ag-0.5Cu and copper substrate. In 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013). IEEE, (2013)

  32. G. Kumar, K.N. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces. Adv. Colloids Interface Sci. 133(2), 61–89 (2007)

    Article  CAS  Google Scholar 

  33. M.Y. Xiong, L. Zhang, P. He, W.M. Long, Stress analysis and structural optimization of 3D IC package based on the Taguchi method. Solder. Surf. Mount Technol. 32(1), 42–47 (2020)

    Article  Google Scholar 

  34. S.H. Rajendran, H. Kang, J.P. Jung, Ultrasonic-assisted dispersion of ZnO nanoparticles to Sn-Bi solder: a study on microstructure, spreading, and mechanical properties. J. Mater. Eng. Perform. 30, 3167–3172 (2021)

    Article  CAS  Google Scholar 

  35. J. Liang, N. Dariavach, P. Callahan et al., Metallurgy and kinetics of liquid-solid interfacial reaction during lead-free soldering. Mater. Trans. 47(2), 317–325 (2006)

    Article  CAS  Google Scholar 

  36. N. Jiang, L. Zhang, K.K. Xu et al., Effects of SiC nanowires on reliability of Sn58Bi-0.05GNSs/Cu solder joints. Int. J. Mod. Phys. B 35(1), 2150007 (2020)

    Article  Google Scholar 

  37. F. Yang, L. Zhang, Z.Q. Liu et al., Effects of CuZnAl particles on properties and microstructure of Sn-58Bi solder. Materials 10(5), 558 (2017)

    Article  CAS  Google Scholar 

  38. L. Yang, J. Dai, Y.C. Zhang et al., Influence of BaTiO3 nanoparticle addition on microstructure and mechanical properties of Sn-58Bi solder. J. Electron. Mater. 15, 3796 (2015)

    Google Scholar 

  39. L. Zhang, L. Sun, Y.H. Guo et al., Wettability of SnAgCu-xEu solders and mechanical properties of solder joints. Chin. Rare Earths 36(4), 51–55 (2015)

    CAS  Google Scholar 

  40. Z. Wang, Q.K. Zhang, Y.X. Chen et al., Influences of Ag and In alloying on Sn-Bi eutectic solder and SnBi/Cu solder joints. J. Mater. Sci.: Mater. Electron. 30(20), 18524–18538 (2019)

    CAS  Google Scholar 

  41. W.X. Dong, Y.W. Shi, Y.P. Lei et al., Effects of trace rare earth on microstructure and properties of SnBi based lead-free solder brazed joint. Weld. Join. 7, 43–46 (2008)

    Google Scholar 

  42. Y.L. Li, Z.L. Wang, X.W. Li et al., Effect of temperature and substrate surface roughness on wetting behavior and interfacial structure between Sn-35Bi-1Ag solder and Cu substrate. J. Mater. Sci.: Mater. Electron. 31(5), 4224–4236 (2020)

    CAS  Google Scholar 

  43. J. Shen, Y. Pu, H. Yin et al., Effects of Cu, Zn on the wettability and shear mechanical properties of Sn-Bi-based lead-free solders. J. Electron. Mater. 44(1), 532–541 (2015)

    Article  CAS  Google Scholar 

  44. L. Zang, Z. Yuan, H. Zhao et al., Wettability of molten Sn-Bi-Cu solder on Cu substrate. Mater. Lett. 63(23), 2067–2069 (2009)

    Article  CAS  Google Scholar 

  45. V. Silva, G. Gouveia, R. Reyes et al., Sn-Bi(-Ga) TIM alloys: microstructure, tensile properties, wettability and interfacial reactions. J. Electron. Mater. 48(8), 4773–4788 (2019)

    Article  CAS  Google Scholar 

  46. W.C. Yang, J.D. Li, Y.T. Li et al., Effect of aluminum addition on the microstructure and properties of non-eutectic Sn-20Bi solder alloys. Materials 12, 1194 (2019)

    Article  CAS  Google Scholar 

  47. c. Suganuma, Foundation of Lead-Free Soldering Technology. Liu Z Q, Li M Y, Trans. (Science Press, China, Beijing, 2017)

  48. B.L. Silva, V.C.E. da Silva, A. Garcia et al., Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys. J. Electron. Mater. 46(3), 1754–1769 (2017)

    Article  CAS  Google Scholar 

  49. D. Ye, C.C. Du, M.F. Wu et al., Microstructure and mechanical properties of Sn-xBi solder alloy. J. Mater. Sci.: Mater. Electron. 26(6), 3629–3637 (2015)

    CAS  Google Scholar 

  50. L. Sun, M.H. Chen, L. Zhang et al., Effect of addition of CuZnAl particle on the properties of Sn solder joint. J. Mater. Process. Technol. 278, 116507 (2020)

    Article  CAS  Google Scholar 

  51. L. Yang, C.C. Du, J. Dai et al., Effect of nanosized graphite on properties of Sn-Bi solder. J. Mater. Sci.: Mater. Electron. 24(11), 4180–4185 (2013)

    CAS  Google Scholar 

  52. W.B. Zhu, M. Yong, X.Z. Li et al., Effects of Al2O3 nanoparticles on the microstructure and properties of Sn58Bi solder alloys. J. Mater. Sci.: Mater. Electron. 29(9), 7575–7585 (2018)

    CAS  Google Scholar 

  53. A.K. Gain, L.C. Zhang, Interfacial microstructure, wettability and material properties of nickel (Ni) nanoparticle doped tin-bismuth-silver (Sn-Bi-Ag) solder on copper (Cu) substrate. J. Mater. Sci.: Mater. Electron. 27(4), 1–13 (2016)

    Google Scholar 

  54. X.Z. Li, Y. Ma, W. Zhou et al., Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys. Mater. Sci. Eng. A 684, 328–334 (2016)

    Article  CAS  Google Scholar 

  55. Y. Li, Y.C. Chan, Effect of silver (Ag) nanoparticle size on the microstructure and mechanical properties of Sn58Bi-Ag composite solders. J. Alloy Compd. 645, 566–576 (2015)

    Article  CAS  Google Scholar 

  56. Y. Liu, H. Zhang, F.L. Sun, Solderability of SnBi-nano Cu solder pastes and microstructure of the solder joints. J. Mater. Sci.: Mater. Electron. 27(3), 2235–2241 (2016)

    CAS  Google Scholar 

  57. L. Sun, M.H. Chen, L.S. Xie et al., Properties and mechanism of nano Al particles reinforced Sn1.0Ag0.5Cu solders. Trans. The China Weld. Inst. 39(8), 47–50 (2018)

    Google Scholar 

  58. L. Yang, L. Zhu, Y.C. Zhang et al., Microstructure, IMCs layer and reliability of Sn-58Bi solder joint reinforced by Mo nanoparticles during thermal cycling. Mater. Charact. 148, 280–291 (2018)

    Article  CAS  Google Scholar 

  59. H.W. Miao, J.G. Duh, B.S. Chiou, Thermal cycling test in Sn-Bi and Sn-Bi-Cu solder joints. J. Mater. Sci.: Mater. Electron. 11(8), 609–618 (2000)

    CAS  Google Scholar 

  60. M.J. Dong, Z.M. Gao, Y.C. Liu et al., Effect of indium addition on the microstructural formation and soldered interfaces of Sn-2.5Bi-1Zn-0.3Ag lead-free solder. Int. J. Miner. Metall. Mater. 19(11), 1029–1035 (2012)

    Article  CAS  Google Scholar 

  61. X. Mao, R. Zhang, X. Hu, Influence of Ni foam/Sn composite solder foil on IMC growth and mechanical properties of solder joints bonded with solid-liquid electromigration. Intermetallics 131(11), 107107 (2021)

    Article  CAS  Google Scholar 

  62. F.J. Wang, Y. Huang, C.C. Du, Mechanical properties of SnBi-SnAgCu composition mixed solder joints using bending test. Mater. Sci. Eng. A 668, 224–233 (2016)

    Article  CAS  Google Scholar 

  63. K. He, Y.P. Chen, D.A. Hu et al., Effect of Al element on microstructure and mechanical properties of hypoeutectic SnBi solder joint. Trans. Mater. Heat Treat. 41(3), 163–169 (2020)

    Google Scholar 

  64. H. Wang, S.B. Xue, F. Zhao et al., Effects of Ga, Al, Ag, and Ce multi-additions on the wetting characteristics of Sn-9Zn lead-free solder. Rare Met. 21(2), 111–119 (2009)

    Google Scholar 

  65. W.B. Guo, Z.Y. She, H.T. Xue et al., Study on the effect of Ti, Al, Cu and Ag doping to the bonding properties of soldered β-Sn(100)/ZrO2(111) interface. Int. J. Appl. Ceram. Technol. 1, 1–9 (2020)

    Google Scholar 

  66. H. Xu, D.J. Luo, Y.H. Yan et al., Effects of addition of trace elements on the structure and properties of multicomponent Sn-Bi based solder alloys. Micronanoelectron. Technol. 58(2), 124–130 (2021)

    Google Scholar 

  67. X.J. Wang, B. Liu, H.L. Zhou et al., Effect of P on microstructure and mechanical properties of Sn-Bi solder. J. Mater. Eng. 44(7), 113–118 (2016)

    Google Scholar 

  68. P. He, X.C. Lu, B.B. Zhang et al., Efect of alloy element on micro structure and impact toughness of Sn-57Bi lead-free solder. J. Mater. Eng. 31(10), 13–17 (2010)

    CAS  Google Scholar 

  69. T.Q. Yang, X.C. Zhao, Z.S. Xiong et al., Improvement of microstructure and tensile properties of Sn-Bi-Ag alloy by heterogeneous nucleation of β-Sn on Ag3Sn. Mater. Sci. Eng. A 785, 139372 (2020)

    Article  CAS  Google Scholar 

  70. W.B. Zhu, W.W. Zhang, W. Zhou et al., Improved microstructure and mechanical properties for SnBi solder alloy by addition of Cr powders. J. Alloy Compd. 789, 805–813 (2019)

    Article  CAS  Google Scholar 

  71. W.X. Chen, S.B. Xue, H. Wang et al., Investigation on properties of Ga to Sn-9Zn lead-free solder. J. Mater. Sci.: Mater. Electron. 21(5), 496–502 (2010)

    Google Scholar 

  72. L.Z. Yang, W. Zhou, Y. Ma et al., Effects of Ni addition on mechanical properties of Sn58Bi solder alloy during solid-state aging. Mater. Sci. Eng. A 667(14), 368–375 (2016)

    Article  CAS  Google Scholar 

  73. Y. Ma, X.Z. Li, L.Z. Yang et al., Effects of graphene nanosheets addition on microstructure and mechanical properties of SnBi solder alloys during solid-state aging. Mater. Sci. Eng. A 696, 437–444 (2017)

    Article  CAS  Google Scholar 

  74. Y.L. Huang, Z.Y. Xiu, G.H. Wu et al., Sn-3.0Ag-0.5Cu nanocomposite solders reinforced by graphene nanosheets. J. Mater. Sci.: Mater. Electron. 27(7), 6809–6815 (2016)

    CAS  Google Scholar 

  75. D.L. Ma, P. Wu, Improved microstructure and mechanical properties for Sn58Bi0.7Zn solder joint by addition of graphene nanosheets. J. Alloys Compds. 671, 127–136 (2016)

    Article  CAS  Google Scholar 

  76. Y.F. Jing, L. Yang, J.G. Ge et al., Influence of electromigration on microstructure and mechanical properties of Sn58Bi solder. Hot Work. Technol. 44(7), 2473–2478 (2015)

    Google Scholar 

  77. Z. Zhao, L. Liu, H.S. Choi et al., Effect of nano-Al2O3 reinforcement on the microstructure and reliability of Sn-30Ag-05Cu solder joints. Microelectron. Reliab. 60, 126–134 (2016)

    Article  CAS  Google Scholar 

  78. Q.K. Zhang, H.F. Zou, Z.F. Zhang, Improving tensile and fatigue properties of Sn-58Bi/Cu solder joints through alloying substrate. J. Mater. Res. 25(02), 303–314 (2010)

    Article  CAS  Google Scholar 

  79. H.F. Zou, Q.K. Zhang, Z.F. Zhang, Interfacial microstructure and mechanical properties of SnBi/Cu joints by alloying Cu substrate. Mater. Sci. Eng., A 532(15), 167–177 (2012)

    Article  CAS  Google Scholar 

  80. S. Cheng, C.M. Huang, M. Pecht, A review of lead-free solders for electronics applications. Microelectron. Reliab. 75, 77–95 (2017)

    Article  CAS  Google Scholar 

  81. F.J. Wang, Y. Huang, D. Li, The shear strength and fracture mode of Sn- x Bi (x=0, 2.5, 5, 15)/Cu solder joints// 2017 18th International Conference on Electronic Packaging Technology (ICEPT). IEEE, (2017)

  82. G. Jeong, D.Y. Yu, S. Baek et al., Interfacial reactions and mechanical properties of Sn-58Bi solder joints with ag nanoparticles prepared using ultra-fast laser bonding. Materials 14(2), 335 (2021)

    Article  CAS  Google Scholar 

  83. Y.Q. Wan, S. Li, X.W. Hu et al., Shear strength and fracture surface analysis of Sn58Bi/Cu solder joints under a wide range of strain rates. Microelectron. Reliab. 86, 27–37 (2018)

    Article  CAS  Google Scholar 

  84. Q.K. Zhang, Z.F. Zhang, In situ observations on shear and creep-fatigue fracture behaviors of SnBi/Cu solder joints. Mater. Sci. Eng. A 528(6), 2686–2693 (2011)

    Article  CAS  Google Scholar 

  85. S. Amares, T. Bandar, Effect on shear strength and hardness properties of tin based solder alloy, Sn-50Bi, Sn-50Bi+2%TiO2 nanoparticles. Adv. Mater. Res. 1159, 54–59 (2020)

    Article  Google Scholar 

  86. Z.B. Li, D.A. Hu, Y.P. Chen et al., Effect of Fe particles on the structure and properties of SnBi/Cu joint during aging. Trans. China Weld. Inst. 41(8), 22–28 (2020)

    CAS  Google Scholar 

  87. M.M. Billah, Q.F. Chen, Strength of MWCNT-reinforced 70Sn-30Bi solder alloys. J. Electron. Mater. 45(1), 1–6 (2015)

    Google Scholar 

  88. Y. Liu, S.L. Li, H. Zhang et al., Microstructure and hardness of SAC305-xNi solder on Cu and graphene-coated Cu substrates. J. Mater. Sci.: Mater. Electron. 29, 1–9 (2018)

    Google Scholar 

  89. T.T. Dele-Afolabi, M.A.A. Hanim, R. Calin et al., Microstructure evolution and hardness of MWCNT-reinforced Sn-5Sb/Cu composite solder joints under different thermal aging conditions. Microelectron. Reliab. 110, 3681 (2020)

    Article  CAS  Google Scholar 

  90. C.J. Lee, K.D. Min, B.W. Hwang et al., The effect of pH on synthesizing Ni-decorated MWCNTs and its application for Sn-58Bi solder. Curr. Appl. Phys. 19(11), 1182–1186 (2019)

    Article  Google Scholar 

  91. T.T. Dele-Afolabi, M.A.A. Hanim, M. Norkhairunnisa et al., Growth kinetics of intermetallic layer in lead-free Sn-5Sb solder reinforced with multi-walled carbon nanotubes. J. Mater. Sci.: Mater. Electron. 26, 8249–8259 (2015)

    CAS  Google Scholar 

  92. Y. Liu, B.Q. Ren, M. Zhou et al., Effect of porous Cu addition on the microstructure and mechanical properties of SnBi-xAg solder joints. Appl. Phys. A 126(9), 1–10 (2020)

    Google Scholar 

  93. Y. Peng, K. Deng, Study on the mechanical properties of the novel Sn-Bi/graphene nanocomposite by finite element simulation. J. Alloy Compd. 625(1), 44–51 (2015)

    Article  CAS  Google Scholar 

  94. Lv Y, Yang W C, Mao J, et al. Effect of graphene nano-sheets additions on the density, hardness, conductivity, and corrosion behavior of Sn-0.7Cu solder alloy. Journal of Materials Science Materials in Electronics, 2020, 31:202–211.

  95. L. Sun, M.H. Chen, C.C. Wei et al., Effect of thermal cycles on interface and mechanical property of low-Ag Sn1.0Ag0.5Cu(nano-Al)/Cu solder joints. J. Mater. Sci.: Mater. Electron. 29(12), 9757–9763 (2018)

    CAS  Google Scholar 

  96. H.G. Song, J.W. Morris, F. Hua, The creep properties of lead-free solder joints. JOM 54(6), 30–32 (2002)

    Article  CAS  Google Scholar 

  97. Y. Zuo, L.M. Ma, F. Guo et al., Effects of electromigration on the creep and thermal fatigue behavior of Sn58Bi solder joints. J. Electron. Mater. 43(12), 4395–4405 (2014)

    Article  CAS  Google Scholar 

  98. R. Mahmudi, A.R. Geranmayeh, S.R. Mahmoodi et al., Room-temperature indentation creep of lead-free Sn-Bi solder alloys. J. Mater. Sci.: Mater. Electron. 18(10), 1071–1078 (2007)

    CAS  Google Scholar 

  99. L. Hu, M. Zeng, Y.M. Zhang et al., Effect of Ag on indentation creep property and microstructure of Sn-Bi solder. J. Xihua Univ. 29(4), 72–74 (2010)

    CAS  Google Scholar 

  100. D.L. Ma, P. Wu, Effects of Zn addition on mechanical properties of eutectic Sn-58Bi solder during liquid-state aging. Trans. Nonferrous Met. Soc. China 25(4), 1225–1233 (2015)

    Article  CAS  Google Scholar 

  101. F.A. El-Salam, A. El-Khalek, R.H. Nada et al., Effect of silver addition on the creep parameters of Sn–7 wt.% Bi alloy during transformation. Mater. Charact. 59(1), 9–17 (2008)

    Article  CAS  Google Scholar 

  102. C.H. Zhang, N. Zhang, S.M. Wang et al., Effect of creep on interface morphology and mechanical properties of Cu/SnBi-xSm/Cu solder joint. Foundry Technol. 39(2), 415–422 (2018)

    Google Scholar 

  103. H. Zhang, F.L. Sun, Y. Liu, Copper foam enhanced Sn58Bi solder joint with high performance for low temperature packaging. Mater. Lett. 241, 108–110 (2019)

    Article  CAS  Google Scholar 

  104. L. Liu, S.B. Xue, R.Y. Ni et al., Study on the reliability of Sn-Bi composite solder pastes with thermosetting epoxy under thermal cycling and humidity treatment. Crystal 11, 1–11 (2021)

    Google Scholar 

  105. H. Gao, F.X. Wei, Y.W. Sui et al., Effect of nickel (Ni) on the growth rate of Cu6Sn5 intermetallic compounds between Sn-Cu-Bi solder and Cu substrate. J. Mater. Sci.: Mater. Electron. 30(3), 2186–2191 (2019)

    CAS  Google Scholar 

  106. Y.Q. Lai, X.W. Hu, Y.L. Li et al., Influence of Bi addition on pure Sn solder joints: interfacial reaction, growth behavior and thermal behavior. J. Wuhan Univ. Technol. (Mater. Sci.) 34(03), 668–675 (2019)

    Article  CAS  Google Scholar 

  107. Q. Yu, X.W. Hu, Y.L. Li et al., Interfacial reaction between liquid-state Sn-x Bi solder and Co substrate. J. Mater. Sci.: Mater. Electron. 29(11), 9155–9165 (2018)

    Google Scholar 

  108. T.Y. Kang, Y.Y. Xiu, C.Z. Liu et al., Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect. J. Alloy Compd. 509(5), 1785–1789 (2011)

    Article  CAS  Google Scholar 

  109. Q.K. Zhang, H.F. Zou, Z.F. Zhang, Bi segregation mechanism and time-dependent brittleness inhibition at SnBi/Cu interface. Sci. Sin. Technol. 42(01), 13–21 (2012)

    Article  Google Scholar 

  110. Y. Goh, A. Haseeb, H.L. Liew et al., Deformation and fracture behavior of electroplated Sn-Bi/Cu solder joints. J. Mater. Sci. 50(12), 4258–4269 (2015)

    Article  CAS  Google Scholar 

  111. C.C. Cao, K.K. Zhang, B.J. Shi et al., The interface microstructure and shear strength of Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints under thermal-cycle loading. Metals 9(5), 518 (2019)

    Article  CAS  Google Scholar 

  112. T.Y. Kang, Y.Y. Xiu, B. Xu et al., Effect of Ni addition on the formation and growth of intermetallic compound at eutectic SnBi/Cu interface. Adv. Mater. Res. 160–162, 709–714 (2011)

    Google Scholar 

  113. Q.F. Wang, H. Chen, F.J. Wang, Effect of trace Zn addition on interfacial evolution in Sn-10Bi/Cu solder joints during aging condition. Materials 12, 4240 (2019)

    Article  CAS  Google Scholar 

  114. J. Shen, C.P. Wu, S.Z. Li, Effects of rare earth additions on the microstructural evolution and microhardness of Sn30Bi0.5Cu and Sn35BilAg solder alloys. J. Mater. Sci. 23(1), 156–163 (2012)

    CAS  Google Scholar 

  115. L.Z. Yang, Z. Wei, X.Z. Li et al., Effect of Ni and Ni-coated carbon nanotubes on the interfacial reaction and growth behavior of Sn58Bi/Cu intermetallic compound layers. J. Mater. Sci.: Mater. Electron. 27(11), 1–7 (2016)

    CAS  Google Scholar 

  116. Q. Li, J.H. Huang, H. Zhang et al., Effect of Al on the structure and properties of Sn-58Bi lead-free solder. Electron. Process Technol. 1, 1–4 (2008)

    CAS  Google Scholar 

  117. J.F. Li, S.H. Mannan, M.P. De Clo et al., Interfacial reactions between molten Sn-Bi-X solders and Cu substrates for liquid solder interconnects. Acta Mater. 54(11), 2907–2922 (2006)

    Article  CAS  Google Scholar 

  118. C.P. Wu, J. Shen, C.F. Peng, Effects of trace amounts of rare earth additions on the microstructures and interfacial reactions of Sn57Bi1Ag/Cu solder joints. J. Mater. Sci.: Mater. Electron. 23(1), 14–21 (2012)

    CAS  Google Scholar 

  119. F.Q. Hu, Q.K. Zhang, J.J. Jiang et al., Influences of Ag addition to Sn-58Bi solder on SnBi/Cu interfacial reaction. Mater. Lett. 214, 142–145 (2017)

    Article  CAS  Google Scholar 

  120. N. Jiang, L. Zhang, L. Sun et al., Effect of thermal cycling on interface and properties of Sn58Bi (nano Ti)/Cu solder joints. Rare Met. Mater. Eng. 50(1), 328–332 (2021)

    Google Scholar 

  121. N. Jiang, L. Zhang, W.M. Long et al., Influence of doping Ti particles on intermetallic compounds growth at Sn58Bi/Cu interface during solid-liquid diffusion. J. Mater. Sci.: Mater. Electron. 32, 3341–3351 (2021)

    CAS  Google Scholar 

  122. Z. Zhu, Y.C. Chan, F. Wu, Effects of ZrO2 nanoparticles on the mechanical properties of Sn42Bi58 solder joint. In: 2015 16th International Conference on Electronic Packaging Technology (ICEPT). IEEE (2015)

  123. W.C. Zhu, Z.J. Yang, Y.K. Fu et al., Effect of graphene nanosheet addition on the wettability and mechanical properties of Sn-20Bi-xGNS/Cu solder joints. Materials 13, 3968 (2020)

    Article  CAS  Google Scholar 

  124. M.Y. Xiong, L. Zhang, L. Sun et al., Effect of CuZnAl particles addition on microstructure of Cu/Sn58Bi/Cu TLP bonding solder joints. Vacuum 167, 301–306 (2019)

    Article  CAS  Google Scholar 

  125. L. Zhang, Z.Q. Liu, Inhibition of intermetallic compounds growth at Sn-58Bi/Cu interface bearing CuZnAl memory particles (2–6 μm). J. Mater. Sci.: Mater. Electron. 31(3), 2466–2480 (2020)

    CAS  Google Scholar 

  126. C.W. Lee, Y.S. Shin, S.H. Yoo, Effect of SiC nanoparticles dispersion on the microstructure and mechanical properties of electroplated Sn-Bi solder alloy. J. Nano Res. 11, 113–118 (2010)

    Article  CAS  Google Scholar 

  127. B.B. Song, Y. Li, S.Y. Zhou et al., Effect of thermal cycling on microstructure and mechanical properties of Sn-58Bi-xCNTs/Cu solder joint. Weld. Join. 4, 27–32 (2018)

    Google Scholar 

  128. L. Yang, H.X. Liu, Y.C. Zhang et al., Study on the reliability of carbon nanotube-reinforced Sn-58Bi lead-free solder joints. J. Mater. Eng. Perform. 26(12), 1–9 (2017)

    Google Scholar 

  129. C.J. Lee, W.R. Myung, B.G. Park et al., Effect of Ag-decorated MWCNT on the mechanical and thermal property of Sn58Bi solder joints for FCLED package. J. Mater. Sci.: Mater. Electron. 31, 10170–10176 (2020)

    CAS  Google Scholar 

  130. X. Gu, D. Yang, Y.C. Chan et al., Effects of electromigration on the growth of intermetallic compounds in Cu/SnBi/Cu solder joints. J. Mater. Res. 23(10), 2591–2596 (2008)

    Article  CAS  Google Scholar 

  131. H.W. He, G.C. Xu, F. Guo, Evolution of microstructure and morphology of eutectic SnBi solder joint during electromigration process at high temperature. Rare Met. Mater. Eng. 39, 251–254 (2010)

    Google Scholar 

  132. L.M. Ma, Y. Zuo, S.H. Liu et al., The failure models of Sn-based solder joints under coupling effects of electromigration and thermal cycling. J. Appl. Phys. 113(4), 044904 (2013)

    Article  CAS  Google Scholar 

  133. G.C. Xu, H.W. He, J.K. Nie et al., Electromigration suppressing effect of Ni particle on SnBi soldering point. Electron. Components Mater. 27(11), 60–63 (2008)

    CAS  Google Scholar 

  134. L. Yang, H.Y. Liu, P.P. Wu, Effect of Fe particle on electromigration for SnBi solder. Hot Work. Technol. 45(17), 216–218 (2016)

    Google Scholar 

  135. H.W. He, G.C. Xu, F. Guo, Effect of small amount of rare earth addition on electromigration in eutectic SnBi solder reaction couple. J. Mater. Sci. 44(8), 2089–2096 (2009)

    Article  CAS  Google Scholar 

  136. C.M. Chen, C.C. Huang, Effects of silver doping on electromigration of eutectic SnBi solder. J. Alloy Compd. 461, 235–241 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was carried out with the support of the Key project of State Key Laboratory of Advanced Welding and Joining (AWJ-19Z04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Zhang, L., Gao, LL. et al. Recent advances on SnBi low-temperature solder for electronic interconnections. J Mater Sci: Mater Electron 32, 22731–22759 (2021). https://doi.org/10.1007/s10854-021-06820-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06820-7

Navigation