Skip to main content
Log in

Effects of Electromigration on the Creep and Thermal Fatigue Behavior of Sn58Bi Solder Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electromigration (EM), creep, and thermal fatigue (TF) are the most important aspects of the reliability of electronic solder joints, the failure mechanisms of which used to be investigated separately. However, current, mechanical loading, and temperature fluctuation usually co-exist under real service conditions, especially as the magnitude of current density is increasing with joint miniaturization. The importance of EM can no longer be simply ignored when analyzing the creep and TF behavior of a solder joint. The published literature reports that current density substantially changes creep rate, but the intrinsic mechanism is still unclear. Hence, the purpose of this study was to investigate the effects of EM on the creep and TF behavior of Sn58Bi solder joints by analyzing the evolution of electrical resistance and microstructure. The results indicated that EM shortens the lifetime of creep or TF of Sn58Bi solder joints. During creep, EM delays or suppresses the cracking and deforming process, so fracture occurs at the cathode interface. During TF, EM suppresses the cracking process and changes the interfacial structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Yin, S. Wei, Z. Xu, and Y. Geng, J. Mater. Sci.: Mater. Electron. 24, 1369 (2013).

    Google Scholar 

  2. J.H. Ke, H.Y. Chuang, W.L. Shih, and C.R. Kao, Acta Mater. 60, 2082 (2012).

    Article  Google Scholar 

  3. K.N. Subramanian and J.G. Lee, Mater. Sci. Eng. A 421, 46 (2006).

    Article  Google Scholar 

  4. Q.K. Zhang and Z.F. Zhang, Scripta Mater. 67, 289 (2012).

    Article  Google Scholar 

  5. M. Pharr, K. Zhao, Z. Suo, F.-Y. Ouyang, and P. Liu, J. Appl. Phys. 110, 083716 (2011).

    Article  Google Scholar 

  6. Y. Zuo, L. Ma, S. Liu, T. Wang, F. Guo, and X. Wang, J. Mater. Sci. 48, 2318 (2012).

    Article  Google Scholar 

  7. F. Su, R. Mao, X. Wang, G. Wang, and H. Pan, Microelectron. Reliab. 51, 1020 (2011).

    Article  Google Scholar 

  8. K. Lee, K.-S. Kim, Y. Tsukada, K. Suganuma, K. Yamanaka, S. Kuritani, and M. Ueshima, Microelectron. Reliab. 51, 2290 (2011).

    Article  Google Scholar 

  9. C. Kinney, T.-K. Lee, K.-C. Liu, and J.W. Morris, J. Electron. Mater. 38, 2585 (2009).

    Article  Google Scholar 

  10. C. Chen, H.M. Tong, and K.N. Tu, Annu. Rev. Mater. Res. 40, 531 (2010).

    Article  Google Scholar 

  11. C. Kinney, J.W. Morris, T.-K. Lee, K.-C. Liu, J. Xue, and D. Towne, J. Electron. Mater. 38, 221 (2008).

    Article  Google Scholar 

  12. F. Ren, J.-W. Nah, K.N. Tu, B. Xiong, L. Xu, and J.H.L. Pang, Appl. Phys. Lett. 89, 141914 (2006).

    Article  Google Scholar 

  13. Y. Zuo, L. Ma, S. Liu, Y. Shu, and F. Guo, J. Electron. Mater. 1 (2014).

  14. B.A. Cook, I.E. Anderson, J.L. Harringa, and S.K. Kang, J. Electron. Mater. 32, 1384 (2003).

    Article  Google Scholar 

  15. M. Lu, D.-Y. Shih, P. Lauro, and C. Goldsmith, Appl. Phys. Lett. 94, 011912 (2009).

    Article  Google Scholar 

  16. G. Xu, H. He, and F. Guo, J. Electron. Mater. 38, 273 (2008).

    Article  Google Scholar 

  17. G. Xu, F. Guo, X. Wang, Z. Xia, Y. Lei, Y. Shi, and X. Li, J. Alloy. Compd. 509, 878 (2011).

    Article  Google Scholar 

  18. A. Lee, W. Liu, C.E. Ho, and K.N. Subramanian, J. Appl. Phys. 102, 053507 (2007).

    Article  Google Scholar 

  19. J.H. Ke, T.L. Yang, Y.S. Lai, and C.R. Kao, Acta Mater. 59, 2462 (2011).

    Article  Google Scholar 

  20. Y. Wang, K.H. Lu, V. Gupta, L. Stiborek, D. Shirley, J. Im, P.S. Ho, and IEEE, 2011 IEEE 61st Electronic Components and Technology Conference (2011), p. 711.

Download references

Acknowledgements

The authors acknowledge support of this work by the Beijing Municipal Natural Science Foundation (2122004) and the National Natural Science Foundation of China (51301007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Ma or Fu Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Y., Ma, L., Guo, F. et al. Effects of Electromigration on the Creep and Thermal Fatigue Behavior of Sn58Bi Solder Joints. J. Electron. Mater. 43, 4395–4405 (2014). https://doi.org/10.1007/s11664-014-3345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3345-5

Keywords

Navigation