Skip to main content

Advertisement

Log in

Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae)

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Each year, mosquito-borne diseases infect nearly 700 million people, resulting more than one million deaths. In this study, we proposed a Metarhizium anisopliae-based method of green synthesis of silver nanoparticles to control the rural malaria vector Anopheles culicifacies. Silver nanoparticles were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction. In acute toxicity experiments, larvae (I–IV instar) and pupae of A. culicifacies were exposed to M. anisopliae-synthesized silver nanoparticles (15, 30, 45, 60, and 75 ppm). LC50 of silver nanoparticles was 32.8 ppm (I), 39.8 ppm (II), 45.9 ppm (III), 51.9 (IV), and 60.0 ppm (pupa). Lower dosages of myco-synthesized silver nanoparticles have detrimental effects on larval and pupal development of A. culicifacies. EI50 was 14.9 ppm. Overall, this research highlighted that myco-synthesized silver nanoparticles can be proposed as effective tools for eco-friendly control of the rural malaria vector A. culicifacies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adak T, Kaur S, Singh OP (1999) Comparative susceptibility of different members of the Anopheles culicifacies complex to Plasmodium vivax. Trans R Soc Trop Med Hyg 93:573–577

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Almirón WR, Brewer ME (1996) Classification of immature stage habitats of Culicidae (Diptera) collected in Córdoba, Argentina. Mem Inst Oswaldo Cruz 91:1–9

    Article  PubMed  Google Scholar 

  • Amalraj D, Vasuki V, Kalyanasundaram M, Tyagi BK, Das PK (1988) Laboratory and field evaluation of three insect regulators against mosquito vectors. Indian J Med Res 87:24–31

    CAS  PubMed  Google Scholar 

  • Balagurunathan R, Radhakrishnan M, Babu Rajendran R, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48:331

    CAS  PubMed  Google Scholar 

  • Banu AN, Balasubramanian C (2014a) Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:2869–2877

    Article  PubMed  Google Scholar 

  • Banu AN, Balasubramanian C (2014b) Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res 113:3843–3851

    Article  PubMed  Google Scholar 

  • Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397

    Article  PubMed  Google Scholar 

  • Bhainsa CK, D’Souza FS (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47:160–164

    Article  CAS  Google Scholar 

  • Birla S, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  CAS  PubMed  Google Scholar 

  • Crompton PD, Pierce SK, Miller LH (2010) Advances and challenges in malaria vaccine development J. Clin Investig 120:4168–4178

    Article  CAS  Google Scholar 

  • Cushing M, Bellier O, Volant P, Aochi H, Baize S, Berge-Thierry C (2004) Recent findings integrated for seismic hazard assessment: the case study of the Durance Fault. OECD/NEA Workshop, Tsukuba

    Google Scholar 

  • Dhanasekaran D, Thangaraj R (2013) Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Asian Pac J Trop Dis 3:174–179

    Article  PubMed Central  CAS  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529

    Article  PubMed  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Bragado AC, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:1–10

    Article  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN et al (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London

    Google Scholar 

  • Ganesh Babu MM, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Coll Surf B Biointerf 74:191–195

    Article  CAS  Google Scholar 

  • Hill AVS (2011) Vaccines against malaria. Phil Trans R Society B 366:2806–2814

    Article  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627

    Article  PubMed  Google Scholar 

  • Kamalakannan S, Gobinath C, Ananth S (2014) Synthesis and characterization of fungus mediated silver nanoparticle for toxicity on filarial vector, Culex quinquefasciatus. Int J Pharm Sci Rev Res 24:124–132

    CAS  Google Scholar 

  • Karunamoorthi K (2012) Global malaria burden: socialomics implications. J Socialomics 1:e108

    Article  Google Scholar 

  • Kaur S, Adak T, Singh OP (2000) Susceptibility of species A, B and C of Anopheles culicifacies complex to Plasmodium yoelii and Plasmodium vinckei petteri infections. J Parasitol Res 86:1345–1348

    Article  CAS  Google Scholar 

  • Korsinczky M, Chen N, Kotecka B, Saul A, Rieckmann K, Cheng Q (2000) Mutations in Plasmodium falciparum cytochrome that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother 44:2100–2108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana KN, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. J Nanotechnol 16:2346–2353

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Kumar PAV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

    Article  CAS  PubMed  Google Scholar 

  • Nagajyothi PC, Sreekanth TVM, Lee JL, Lee KD (2014) Mycosynthesis: Antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J Photochem Photobiol B Biol 130:299–304

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Desn 2:293–298

    Article  CAS  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternate and Botrytis cinerea. Res J Microbiol 9:34–42

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patil SV, Borase HP, Patil CD, Salunke BK (2012) Biosynthesis of silver nanoparticles using latex from few Euphorbian plants and their antimicrobial potential. Appl Biochem Biotechnol 167:776–790

    Article  CAS  PubMed  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A 73:374–381

    Article  Google Scholar 

  • Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373

    Article  CAS  Google Scholar 

  • Ramanitrahasimbola D, Rasoanaivo P, Ratsimamanga-Urverg S, Federici E, Palazzino G, Galeffi C, Nicoletti M (2001) Biological activities of the plant-derived bisindole voacamine with reference to malaria. Phytother Res 15:30–33

    Article  CAS  PubMed  Google Scholar 

  • Rasoanaivo P, Ratsimamanga-Urveg S, Milijaona R, Rafatro M, Rakoko-Tasimamamnga A, Galeffi C, Nicoletti M (1994) In vitro and in vivo chloroquine-potentiating action of Strychnos myrtoides alkaloids against chloroquine-resistant strains of malaria. Planta Med 60:13–18

    Article  CAS  PubMed  Google Scholar 

  • Rasoanaivo P, Ratsimamanga-Urveg S, Rafatro H, Ramanitrahasimbola D, Palazzino G, Galeffi C, Nicoletti M (1998) Alkaloids of Hernandia voyronii: chloroquine-potentiating activity and structure elucidation of herveline D. Planta Med 64:56–61

    Article  Google Scholar 

  • Reiter P (2001) Climate change and mosquito-borne disease. Environ Health Perspect 109:141–161

    Article  PubMed Central  PubMed  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnol 17:3482–3489

    Article  CAS  Google Scholar 

  • Roy S, Mukherjee T, Chakraborty S, Das TK (2014) Biosynthesis, characterization and antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Digest J Nanomats Biost 8:197–205

    Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831

    Article  PubMed  Google Scholar 

  • Sathya A, Ambikapathy V (2012) Studies on the phytochemistry, antimicrobial activity and green synthesis of nanoparticles using Cassia tora L. Drug Invent Today 4:408–410

    CAS  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G et al (2009) Biosynthesis of silver nanoparticles using the aqueous extract from the compaction producing fungal strain. Process Biochem 44:939–943

    Article  CAS  Google Scholar 

  • Shankar S, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Sharma CS, Nema RK, Sharma VK (2009) Synthesis, anticonvulsant activity and in silico study of some novel amino acids incorporated bicyclo compounds. S J Pharm Sci 2:42–47

    CAS  Google Scholar 

  • Sivaraman SK, Elango I, Kumar S, Santhanam V (2009) A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr Sci 3:1055–1059

    Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2013) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanoparticl 2:125–132

    Article  Google Scholar 

  • Soni N, Prakash S (2014) Microbial synthesis of spherical nanosilver and nanogold for mosquito control. Ann Microbiol 64:1099–1111

    Article  CAS  Google Scholar 

  • Subbarao SK, Adak T, Vasantha K, Joshi Raghavendra K, Cochrane AH, Nussenzwig RS, Sharma VP (1988) Susceptibility of Anopheles culicifacies species A and B to Plasmodium vivax and Plasmodium falciparum as determined by immuno-radiomatric assay. Trans R Soc Trop Med Hyg 82:394–397

    Article  CAS  PubMed  Google Scholar 

  • Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. doi:10.1007/s00436-015-4556-2

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  PubMed  Google Scholar 

  • Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: Interdisciplinary science of applications. Afr J Biotechnol 12:219–226

    Google Scholar 

  • Turschner S, Efferth T (2009) Drug resistance in Plasmodium: natural products in the fight against malaria. Mini Rev Med Chem 9:206–214

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Coll Surf B Biointerf 53:55–59

    Article  CAS  Google Scholar 

  • Wei X, Zhou H, Xu L, Luo M, Liu H (2014) Sunlight-induced biosynthesis of silver nanoparticles by animal and fungus biomass and their characterization. J Chem Technol Biotechnol 89:305–311

    Article  CAS  Google Scholar 

  • WHO (2014) Malaria. Fact sheet No. 94

  • Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Manoeuvring the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666–15675

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111:16858–16865

    Article  CAS  Google Scholar 

  • Yixia Z, Guo G, Qirong Q, Daxiang C (2012) Chloroplasts-mediated biosynthesis of nanoscale Au–Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res Lett 7:1–8

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. S. Jaronski and three anonymous reviewers for their comments on an earlier version of the manuscript. Prof. K. Murugan is grateful to the Department of Science and Technology (New Delhi, India), Project No. DST/SB/EMEQ-335/2013, for providing financial support. The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare no conflicts of interest.

Compliance with ethical standards

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Additional information

Communicated by S.T. Jaronski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amerasan, D., Nataraj, T., Murugan, K. et al. Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89, 249–256 (2016). https://doi.org/10.1007/s10340-015-0675-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-015-0675-x

Keywords

Navigation