Advertisement

International Journal of Biometeorology

, Volume 61, Issue 1, pp 169–180 | Cite as

Effect of spa therapy with saline balneotherapy on oxidant/antioxidant status in patients with rheumatoid arthritis: a single-blind randomized controlled trial

  • Mine KaragülleEmail author
  • Sinan Kardeş
  • Oğuz Karagülle
  • Rian Dişçi
  • Aslıhan Avcı
  • İlker Durak
  • Müfit Zeki Karagülle
Original Paper

Abstract

Oxidative stress has been shown to play a contributory role in the pathogenesis of rheumatoid arthritis (RA). Recent studies have provided evidence for antioxidant properties of spa therapy. The purpose of this study is to investigate whether spa therapy with saline balneotherapy has any influence on the oxidant/antioxidant status in patients with RA and to assess clinical effects of spa therapy. In this investigator-blind randomized controlled trial, we randomly assigned 50 patients in a 1:1 ratio to spa therapy plus standard drug treatment (spa group) or standard drug treatment alone (control group). Spa group followed a 2-week course of spa therapy regimen consisting of a total of 12 balneotherapy sessions in a thermal mineral water pool at 36–37 °C for 20 min every day except Sunday. All clinical and biochemical parameters were assessed at baseline and after spa therapy (2 weeks). The clinical parameters were pain intensity, patient global assessment, physician global assessment, Health Assessment Questionnaire disability index (HAQ-DI), Disease Activity Score for 28-joints based on erythrocyte sedimentation rate (DAS28–4[ESR]). Oxidative status parameters were malondialdehyde (MDA), nonenzymatic superoxide radical scavenger activity (NSSA), antioxidant potential (AOP), and superoxide dismutase (SOD). The NSSA levels were increased significantly in the spa group (p = 0.003) but not in the control group (p = 0.509); and there was a trend in favor of spa therapy for improvements in NSSA levels compared to control (p = 0.091). Significant clinical improvement was found in the spa group compared to the control in terms of patient global assessment (p = 0.011), physician global assessment (p = 0.043), function (HAQ-DI) (p = 0.037), disease activity (DAS28–4[ESR]) (0.044) and swollen joint count (0.009), and a trend toward improvement in pain scores (0.057). Spa therapy with saline balneotherapy exerts antioxidant effect in patients with RA as reflected by the increase in NSSA levels after spa therapy; whether this antioxidant effect contributes to the clinical improvements observed remains to be verified.

Keywords

Spa therapy Balneotherapy Rheumatoid arthritis Salt water Oxidative stress Antioxidant effect 

Abbreviations

AOP

Antioxidant potential

CO2

Carbon dioxide

CRP

C-reactive protein

DAS28–4

Disease Activity Score for 28-joints of 4 variables

DMARD

Disease-modifying antirheumatic drug

ESR

Erythrocyte sedimentation rate

H2S

Hydrogen sulfide

HAQ-DI

Health Assessment Questionnaire Disability Index

MDA

Malondialdehyde

NaCl

Sodium chloride

NBT

Nitroblue tetrazolium

NSSA

Nonenzymatic superoxide radical scavenger activity

RA

Rheumatoid arthritis

RNS

Reactive nitrogen species

ROS

Reactive oxygen species

SD

Standard deviation

SOD

Superoxide dismutase

TCA

Trichloroacetic acid

TNF

Tumor necrosis factor

VAS

Visual analog scale

Notes

Compliance with ethical standards

Funding

None.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Annegret F, Thomas F (2013) Long-term benefits of radon spa therapy in rheumatic diseases: results of the randomised, multi-Centre IMuRa trial. Rheumatol Int 33:2839–2850CrossRefGoogle Scholar
  2. Ardiç F, Ozgen M, Aybek H, et al. (2007) Effects of balneotherapy on serum IL-1, PGE2 and LTB4 levels in fibromyalgia patients. Rheumatol Int 27:441–446CrossRefGoogle Scholar
  3. Arnett FC, Edworthy SM, Bloch DA, et al. (1988) The American rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324CrossRefGoogle Scholar
  4. Bazzichi L, Da Valle Y, Rossi A, et al. (2013) A multidisciplinary approach to study the effects of balneotherapy and mud-bath therapy treatments on fibromyalgia. Clin Exp Rheumatol 31:S111–S120Google Scholar
  5. Bender T, Bariska J, Vághy R, et al. (2007) Effect of balneotherapy on the antioxidant system--a controlled pilot study. Arch Med Res 38:86–89CrossRefGoogle Scholar
  6. Bender T, Karagülle Z, Bálint GP, Gutenbrunner C, Bálint PV, Sukenik S (2005) Hydrotherapy, balneotherapy, and spa treatment in pain management. Rheumatol Int 25:220–224CrossRefGoogle Scholar
  7. Benedetti S, Canino C, Tonti G, et al. (2010) Biomarkers of oxidation, inflammation and cartilage degradation in osteoarthritis patients undergoing sulfur-based spa therapies. Clin Biochem 43:973–978CrossRefGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300Google Scholar
  9. Bjelakovic G, Nikolova D, Gluud LL et al (2012) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases Cochrane Database Syst Rev CD007176Google Scholar
  10. Bjelakovic G, Nikolova D, Gluud C (2014) Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care 17:40–44Google Scholar
  11. Boros M, Kemény Á, Sebők B, et al. (2013) Sulphurous medicinal waters increase somatostatin release: it is a possible mechanism of anti-inflammatory effect of balneotherapy in psoriasis. Eur J Integr Med 5:109–118CrossRefGoogle Scholar
  12. Braga PC, Ceci C, Marabini L, Nappi G (2013) The antioxidant activity of sulphurous thermal water protects against oxidative DNA damage: a comet assay investigation. Drug Res (Stuttg) 63:198–202CrossRefGoogle Scholar
  13. Braga PC, Dal Sasso M, Culici M, et al. (2012) Free radical-scavenging activity of sulfurous water investigated by electron paramagnetic resonance (EPR) spectroscopy. Exp Lung Res 38:67–74CrossRefGoogle Scholar
  14. Bruce B, Fries JF (2005) The Health Assessment Questionnaire (HAQ). Clin Exp Rheumatol 23:S14–S18Google Scholar
  15. Burguera EF, Vela-Anero A, Magalhães J, Meijide-Faílde R, Blanco FJ (2014) Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthr Cartil 22:1026–1035CrossRefGoogle Scholar
  16. Caporali R, Bellometti S, Rossi S, et al. (2010) Safety of mud-bath applications in moderately active rheumatoid arthritis. J Musculoskelet Pain 18:81–87CrossRefGoogle Scholar
  17. Carter HH, Spence AL, Pugh CJ, et al. (2014) Cardiovascular responses to water immersion in humans: impact on cerebral perfusion. Am J Phys Regul Integr Comp Phys 306:R636–R640Google Scholar
  18. Cimen MY, Cimen OB, Kaçmaz M, et al. (2000) Oxidant/antioxidant status of the erythrocytes from patients with rheumatoid arthritis. Clin Rheumatol 19:275–277CrossRefGoogle Scholar
  19. Codish S, Abu-Shakra M, Flusser D, et al. (2005) Mud compress therapy for the hands of patients with rheumatoid arthritis. Rheumatol Int 25:49–54CrossRefGoogle Scholar
  20. Dahle LK, Hill EG, Holman RT (1962) The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters. Arch Biochem Biophys 98:253–261CrossRefGoogle Scholar
  21. De Bandt M, Grossin M, Driss F, et al. (2002) Vitamin E uncouples joint destruction and clinical inflammation in a transgenic mouse model of rheumatoid arthritis. Arthritis Rheum 46:522–532CrossRefGoogle Scholar
  22. Dogliotti G, Galliera E, Iorio E (2011) Effect of immersion in CO2-enriched water on free radical release and total antioxidant status in peripheral arterial occlusive disease. Int Angiol 30:12–17Google Scholar
  23. Dönmez A, Tütüncü ZN, Öztürk K, et al. (2000) Evaluation of the effects of H2S-and CO2-water baths on peripheral circulation disorders. Phys Med Rehab Kuror 10:58–59CrossRefGoogle Scholar
  24. Durak I, Canbolat O, Kaçmaz M, et al. (1998) Antioxidant interferences in superoxide dismutase activity methods using superoxide radical as substrate. Clin Chem Lab Med 36:407–408CrossRefGoogle Scholar
  25. Durak I, Bingöl NK, Avci A, et al. (2000) Acute effects of smoking of cigarettes with different tar content on plasma oxidant/antioxidant status. Inhal Toxicol 12:641–647CrossRefGoogle Scholar
  26. Ekmekcioglu C, Strauss-Blasche G, Holzer F, Marktl W (2002) Effect of sulfur baths on antioxidative defense systems, peroxide concentrations and lipid levels in patients with degenerative osteoarthritis. Forsch Komplementarmed Klass Naturheilkd 9:216–220CrossRefGoogle Scholar
  27. Elkayam O, Wigler I, Tishler M, et al. (1991) Effect of spa therapy in Tiberias on patients with rheumatoid arthritis and osteoarthritis. J Rheumatol 18:1799–1803Google Scholar
  28. Falkenbach A, Kovacs J, Franke A, Jörgens K, Ammer K (2005) Radon therapy for the treatment of rheumatic diseases--review and meta-analysis of controlled clinical trials. Rheumatol Int 25:205–210CrossRefGoogle Scholar
  29. Fioravanti A, Cantarini L, Guidelli GM, Galeazzi M (2011a) Mechanisms of action of spa therapies in rheumatic diseases: what scientific evidence is there? Rheumatol Int 31:1–8CrossRefGoogle Scholar
  30. Fioravanti A, Cantarini L, Bacarelli MR, et al. (2011b) Effects of spa therapy on serum leptin and adiponectin levels in patients with knee osteoarthritis. Rheumatol Int 31:879–882CrossRefGoogle Scholar
  31. Fioravanti A, Lamboglia A, Pascarelli NA, et al. (2013) Thermal water of Vetriolo, Trentino, inhibits the negative effect of interleukin-1B; on nitric oxide production and apoptosis in human osteoarthritic chondrocyte. J Biol Regul Homeost Agents 27:891–902Google Scholar
  32. Fioravanti A, Giannitti C, Cheleschi S, et al. (2015b) Circulating levels of adiponectin, resistin, and visfatin after mud-bath therapy in patients with bilateral knee osteoarthritis. Int J Biometeorol 59:1691–1700CrossRefGoogle Scholar
  33. Fioravanti A, Adamczyk P, Pascarelli NA, et al. (2015a) Clinical and biochemical effects of a 3-week program of diet combined with spa therapy in obese and diabetic patients: a pilot open study. Int J Biometeorol 59:783–789CrossRefGoogle Scholar
  34. Forestier R, André-Vert J, Guillez P, et al. (2009) Non-drug treatment (excluding surgery) in rheumatoid arthritis: clinical practice guidelines. Joint Bone Spine 76:691–698CrossRefGoogle Scholar
  35. Fortunati NA, Fioravanti A, Seri G, et al. (2016) May spa therapy be a valid opportunity to treat hand osteoarthritis? A review of clinical trials and mechanisms of action. Int J Biometeorol 60:1–8CrossRefGoogle Scholar
  36. Franke A, Reiner L, Pratzel HG, et al. (2000) Long-term efficacy of radon spa therapy in rheumatoid arthritis—a randomized, sham-controlled study and follow-up. Rheumatology (Oxford) 39:894–902CrossRefGoogle Scholar
  37. Franke A, Reiner L, Resch KL (2007) Long-term benefit of radon spa therapy in the rehabilitation of rheumatoid arthritis: a randomised, double-blinded trial. Rheumatol Int 27:703–713CrossRefGoogle Scholar
  38. Grabski M, Wozakowska-Kapłon B, Kedziora J (2004) Hydrogen sulfide water balneum effect on erythrocyte superoxide dismutase activity in patients with rheumatoid arthritis—in vitro study. Przegl Lek 61:1405–1409Google Scholar
  39. Gutenbrunner C, Bender T, Cantista P, Karagülle Z (2010) A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology. Int J Biometeorol 54:495–507CrossRefGoogle Scholar
  40. Hall J, Skevington SM, Maddison PJ, Chapman K (1996) A randomized and controlled trial of hydrotherapy in rheumatoid arthritis. Arthritis Care Res 9:206–215CrossRefGoogle Scholar
  41. Hirao M, Yamasaki N, Oze H, et al. (2012) Serum level of oxidative stress marker is dramatically low in patients with rheumatoid arthritis treated with tocilizumab. Rheumatol Int 32:4041–4045CrossRefGoogle Scholar
  42. Hitchon CA, El-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6:265–278CrossRefGoogle Scholar
  43. Jokić A, Sremcević N, Karagülle Z, et al. (2010) Oxidative stress, hemoglobin content, superoxide dismutase and catalase activity influenced by sulphur baths and mud packs in patients with osteoarthritis. Vojnosanit Pregl 67:573–578CrossRefGoogle Scholar
  44. Kageyama Y, Takahashi M, Nagafusa T, et al. (2008) Etanercept reduces the oxidative stress marker levels in patients with rheumatoid arthritis. Rheumatol Int 28:245–251CrossRefGoogle Scholar
  45. Karagülle M, Karagülle MZ (2015) Effectiveness of balneotherapy and spa therapy for the treatment of chronic low back pain: a review on latest evidence. Clin Rheumatol 34:207–214CrossRefGoogle Scholar
  46. Karagülle M, Kardeş S, Dişçi R, Gürdal H, Karagülle MZ (2016) Spa therapy for elderly: a retrospective study of 239 older patients with osteoarthritis. Int J Biometeorol. doi: 10.1007/s00484-016-1138-7 Google Scholar
  47. Karagulle MZ, Tutuncu ZN, Aslan O, et al. (1996) Effects of thermal sulphur bath cure on adjuvant arthritic rats. Phys Med Rehab Kuror 6:53–57CrossRefGoogle Scholar
  48. Karagülle MZ, Karagülle M (2004) Balneotherapy and spa therapy of rheumatic diseases in Turkey: a systematic review. Forsch Komplementarmed Klass Naturheilkd 11:33–41CrossRefGoogle Scholar
  49. Karagülle O, Candir F, Kalinin J, Gehrke A, Karagülle MZ, Gutenbrunner C (2004) Akutwirkungen kalter CO2- Teilbäder auf Mikrozirkulation und Schmerzempfindlichkeit. Phys Med Rehab Kuror 14:13–17CrossRefGoogle Scholar
  50. Katz U, Shoenfeld Y, Zakin V, et al. (2012) Scientific evidence of the therapeutic effects of dead sea treatments: a systematic review. Semin Arthritis Rheum 42:186–200CrossRefGoogle Scholar
  51. Kim LB, Zhilyakov IV (2008) Content of fibronectin and glycosaminoglycans in blood serum of rats with SiO2-induced inflammation after radon-containing water bath. Bull Exp Biol Med 146:717–718CrossRefGoogle Scholar
  52. Kloesch B, Liszt M, Krehan D, et al. (2012) High concentrations of hydrogen sulphide elevate the expression of a series of pro-inflammatory genes in fibroblast-like synoviocytes derived from rheumatoid and osteoarthritis patients. Immunol Lett 141:197–203CrossRefGoogle Scholar
  53. Kocabas H, Kocabas V, Buyukbas S, et al. (2010) Relationship of cellular oxidant and antioxidant status with disease activity in patients with rheumatoid arthritis. Turk J Rheumatol 25:141–147CrossRefGoogle Scholar
  54. Lange U, Müller-Ladner U, Schmidt KL (2006) Balneotherapy in rheumatic diseases—an overview of novel and known aspects. Rheumatol Int 26:497–499CrossRefGoogle Scholar
  55. Leibetseder V, Strauss-Blasche G, Holzer F, et al. (2004) Improving homocysteine levels through balneotherapy: effects of sulphur baths. Clin Chim Acta 343:105–111CrossRefGoogle Scholar
  56. Leicht CA, Kouda K, Umemoto Y, et al. (2015) Hot water immersion induces an acute cytokine response in cervical spinal cord injury. Eur J Appl Physiol 115:2243–2252CrossRefGoogle Scholar
  57. Liang J, Kang D, Wang Y, et al. (2015) Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats. PLoS One 10(2):e0117106CrossRefGoogle Scholar
  58. Loos W, Griebenow S, Winkler R, Porta S (2006) Single cure treatments influence the pro/antioxidative balance. Phys Med Rehab Kuror 16:326–329CrossRefGoogle Scholar
  59. Lowry CA, Lightman SL, Nutt DJ (2009) That warm fuzzy feeling: brain serotonergic neurons and the regulation of emotion. J Psychopharmacol 23:392–400CrossRefGoogle Scholar
  60. Marković M, Majkić-Singh N, Ignjatović S (2009) Beneficial effects of cellular stress response in traditional spa treatment of rheumatoid arthritis. Clin Lab 55:235–241Google Scholar
  61. Martins DF, Brito RN, Stramosk J, et al. (2015) Peripheral neurobiologic mechanisms of antiallodynic effect of warm water immersion therapy on persistent inflammatory pain. J Neurosci Res 93:157–166CrossRefGoogle Scholar
  62. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219CrossRefGoogle Scholar
  63. Mourad E, Harzy T (2012) Sulphur thermal water improves blood lipids but not total anti-oxidant capacity in knee osteoarthritis patients. Shiraz E-Med J 13:54–58Google Scholar
  64. Nugraha B, Neues-Lahusen M, Candir F, Gutenbrunner C (2011) Effect of a series of H2S mineral water bathing on pain in patients with fibromyalgia syndrome—a pilot study. Phys Med Rehab Kuror 21:284–289CrossRefGoogle Scholar
  65. O’Hare JP, Heywood A, Dodds P, et al. (1984) Water immersion in rheumatoid arthritis. Br J Rheumatol 23:117–118Google Scholar
  66. O'Hare JP, Heywood A, Summerhayes C, et al. (1985) Observations on the effect of immersion in bath spa water. Br Med J (Clin Res Ed) 291:1747–1751CrossRefGoogle Scholar
  67. Oláh M, Koncz A, Fehér J, et al. (2010) The effect of balneotherapy on C-reactive protein, serum cholesterol, triglyceride, total antioxidant status and HSP-60 levels. Int J Biometeorol 54:249–254CrossRefGoogle Scholar
  68. Oláh M, Koncz Á, Fehér J, et al. (2011) The effect of balneotherapy on antioxidant, inflammatory, and metabolic indices in patients with cardiovascular risk factors (hypertension and obesity)—a randomised, controlled, follow-up study. Contemp Clin Trials 32:793–801CrossRefGoogle Scholar
  69. Ozkan Y, Yardým-Akaydýn S, Sepici A, et al. (2007) Oxidative status in rheumatoid arthritis. Clin Rheumatol 26:64–68CrossRefGoogle Scholar
  70. Oztürk HS, Cimen MY, Cimen OB, et al. (1999) Oxidant/antioxidant status of plasma samples from patients with rheumatoid arthritis. Rheumatol Int 19:35–37CrossRefGoogle Scholar
  71. Pagourelias ED, Zorou PG, Tsaligopoulos M, et al. (2011) Carbon dioxide balneotherapy and cardiovascular disease. Int J Biometeorol 55:657–663CrossRefGoogle Scholar
  72. Pendergast DR, Lundgren CE (2009) The underwater environment: cardiopulmonary, thermal, and energetic demands. J Appl Physiol 106:276–283CrossRefGoogle Scholar
  73. Prevoo ML, van't Hof MA, Kuper HH, et al. (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38:44–48CrossRefGoogle Scholar
  74. Proceedings of the International Conference; International Congress on Spa Therapy with Saline Waters in Health Resorts (2010) ÖZPMR, Österr Z Phys Med Rehabil 20:51–63Google Scholar
  75. Reginster JY, Badurski J, Bellamy N, et al. (2013) Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial. Ann Rheum Dis 72:179–186CrossRefGoogle Scholar
  76. Santos I, Cantista P, Vasconcelos C (2015) Balneotherapy in rheumatoid arthritis—a systematic review. Int J Biometeorol. doi: 10.1007/s00484-015-1108-5 Google Scholar
  77. Sarban S, Kocyigit A, Yazar M, Isikan UE (2005) Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clin Biochem 38:981–986CrossRefGoogle Scholar
  78. Sato M, Kanikowska D, Iwase S, et al. (2009) Effects of immersion in water containing high concentrations of CO2 (CO2-water) at thermoneutral on thermoregulation and heart rate variability in humans. Int J Biometeorol 53:25–30CrossRefGoogle Scholar
  79. Seven A, Güzel S, Aslan M, Hamuryudan V (2008) Lipid, protein, DNA oxidation and antioxidant status in rheumatoid arthritis. Clin Biochem 41:538–543CrossRefGoogle Scholar
  80. Shehata M, Schwarzmeier JD, Hilgarth M, et al. (2006) Effect of combined spa-exercise therapy on circulating TGF-beta1 levels in patients with ankylosing spondylitis. Wien Klin Wochenschr 118:266–272CrossRefGoogle Scholar
  81. Steiner FJ, Valkenburg HA, van de Stadt RJ, et al. (1979) Balneology treatment of patients with rheumatoid arthritis. Ned Tijdschr Geneeskd 123:661–664Google Scholar
  82. Staalesen Strumse YA, Nordvag BY, Stanghelle JK, et al. (2009) The efficacy of rehabilitation for patients with rheumatoid arthritis: comparison between a 4-week rehabilitation programme in a warm and cold climate. Scand J Rheumatol 38:28–37CrossRefGoogle Scholar
  83. Stamp LK, Khalilova I, Tarr JM, et al. (2012) Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology (Oxford) 51:1796–1803CrossRefGoogle Scholar
  84. Sukenik S, Buskila D, Neumann L, et al. (1990a) Sulphur bath and mud pack treatment for rheumatoid arthritis at the Dead Sea area. Ann Rheum Dis 49:99–102CrossRefGoogle Scholar
  85. Sukenik S, Neumann L, Buskila D, et al. (1990b) Dead Sea bath salts for the treatment of rheumatoid arthritis. Clin Exp Rheumatol 8:353–357Google Scholar
  86. Sukenik S, Neumann L, Flusser D, et al. (1995) Balneotherapy for rheumatoid arthritis at the Dead Sea. Isr J Med Sci 31:210–214Google Scholar
  87. Sukenik S, Flusser D, Abu-Shakra M (1999) The role of spa therapy in various rheumatic diseases. Rheum Dis Clin N Am 25:883–897CrossRefGoogle Scholar
  88. Tarner IH, Müller-Ladner U, Uhlemann C, Lange U (2009) The effect of mild whole-body hyperthermia on systemic levels of TNF-alpha, IL-1beta, and IL-6 in patients with ankylosing spondylitis. Clin Rheumatol 28:397–402CrossRefGoogle Scholar
  89. Tenti S, Cheleschi S, Galeazzi M, Fioravanti A (2015) Spa therapy: can be a valid option for treating knee osteoarthritis? Int J Biometeorol 59:1133–1143CrossRefGoogle Scholar
  90. van Tubergen A, Landewé R, van der Heijde D, et al. (2001) Combined spa-exercise therapy is effective in patients with ankylosing spondylitis: a randomized controlled trial. Arthritis Rheum 45:430–438CrossRefGoogle Scholar
  91. Vareka I, Stejskal D, Varekova R, et al. (2009) Changes in clusterin serum concentration levels in oncologic patients during the course of spa therapy—a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 153:117–120CrossRefGoogle Scholar
  92. Verhagen AP, Bierma-Zeinstra SM, Boers M et al (2015) Balneotherapy (or spa therapy) for rheumatoid arthritis. Cochrane Database Syst Rev CD000518Google Scholar
  93. Wruck CJ, Fragoulis A, Gurzynski A, et al. (2011) Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. Ann Rheum Dis 70:844–850CrossRefGoogle Scholar
  94. Yamamoto N, Hashimoto M (2007a) Immersion in CO2-rich water containing NaCl diminishes blood pressure fluctuation in anesthetized rats. Int J Biometeorol 52:109–116CrossRefGoogle Scholar
  95. Yamamoto N, Hashimoto M (2007b) Spinal cord transection inhibits HR reduction in anesthetized rats immersed in an artificial CO2-hot spring bath. Int J Biometeorol 51:201–208CrossRefGoogle Scholar
  96. Yurtkuran M, Yurtkuran MA, Dilek K, et al. (1999) A randomized, controlled study of balneotherapy in patients with rheumatoid arthritis. Phys Med Rehab Kuror 9:92–96CrossRefGoogle Scholar
  97. Zwerina J, Tzima S, Hayer S, et al. (2005) Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption. FASEB J 19:2011–2013Google Scholar

Copyright information

© ISB 2016

Authors and Affiliations

  1. 1.Department of Medical Ecology and Hydroclimatology, İstanbul Faculty of Medicineİstanbul UniversityİstanbulTurkey
  2. 2.Fachklinik Am HasenbachClaustinal-ZellerfedGermany
  3. 3.Department of Biostatistics, İstanbul Faculty of Medicineİstanbul UniversityİstanbulTurkey
  4. 4.Department of BiochemistryAnkara University Faculty of MedicineAnkaraTurkey

Personalised recommendations