Skip to main content
Log in

Spinal cord transection inhibits HR reduction in anesthetized rats immersed in an artificial CO2-hot spring bath

  • Original Article
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Like humans, the heart rate (HR) of anesthetized rats immersed in CO2-water is lower than that when immersed in tap water at the same temperature. To investigate the afferent signal pathway in the mechanism of HR reduction, Wistar rats were anesthetized with urethane and then the spinal cord was transected between T4 and T5. The animals were immersed up to the axilla in a bathtub of tap-water (CO2 contents: 10–20 mg·l−1) or of CO2-water (965–1,400 mg·l−1) at 35°C while recording HR, arterial blood pressure, and arterial blood gas parameters (PaCO2, PaO2, pH). Arterial blood gas parameters did not change during immersion, irrespective of CO2 concentration of the bath water, whereas the HR was reduced in the CO2-water bath. The inhalation of CO2-mixed gas (5 % CO2, 20 % O2, 75 % N2) resulted in increased levels of blood gases and an increased HR during immersion in all types of water tested. The HR reduction observed in sham transected control animals immersed in CO2-water disappeared after subsequent spinal cord transection. These results show that the dominant afferent signal pathway to the brain, which is involved in inducing the reduced HR during immersion in CO2-water, is located in the neuronal route and not in the bloodstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldridge BR, Burgess DE, Zimmerman EE, Carroll JJ, Sprinkle AG, Speakman RO, Li SG, Brown DR (2002) Heart rate-arterial blood pressure relationship in conscious rat before vs. after spinal cord transection. Am J Physiol Regul Integr Comp Physiol 283:R748–R756

    PubMed  CAS  Google Scholar 

  • Brezenoff HE, Carney K, Buccafusco JJ (1982) Potentiation of the carotid artery occlusion reflex by a cholinergic system in the posterior hypothalamic nucleus. Life Sci 30:391–400

    Article  PubMed  CAS  Google Scholar 

  • Cornish KG, Hughes K, Dreessen A, Olguin M (1999) Head-out immersion in the non-human primate: a model of cardiovascular deconditioning during microgravity. Aviat Space Environ Med 70:773–779

    PubMed  CAS  Google Scholar 

  • Diji A (1959) Local vasodilator action of carbon dioxide on blood vessels of the hand. J Appl Physiol 14:414–416

    PubMed  CAS  Google Scholar 

  • Dodt E (1956) Die Aktivität der Thermoreceptoren bei nicht-thermischen Reizen bekannter thermoregulatorischer Wirkung. Pflügers Arch 263:188–200

    Article  PubMed  CAS  Google Scholar 

  • Dorrance C, McClellan WS (1940) Effect of natural carbonated baths on rate and amplitude of pulse and blood pressure. Arch Phys Ther 21:133–140

    Google Scholar 

  • Ferrari AU, Daffonchio A, Albergati F, Mancia G (1991) Differential effects of aging on the heart rate and blood pressure influences of arterial baroreceptors in awake rats. J Hypertens 9:615–621

    Article  PubMed  CAS  Google Scholar 

  • Fisher LA, Cave CR, Brown MR (1985) Central nervous system effects of bombesin on the cardiovascular response to cold exposure. Brain Res 341:261–268

    Article  PubMed  CAS  Google Scholar 

  • Greenberg HE, Sica A, Batson D, Scharf SM (1999) Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol 86:298–305

    PubMed  CAS  Google Scholar 

  • Hartmann BR, Bassenge E, Hartmann M (1997a) Effects of serial percutaneous application of carbon dioxide in intermittent claudication: results of a controlled trial. Angiology 48:957–963

    PubMed  CAS  Google Scholar 

  • Hartmann BR, Bassenge E, Pittler M (1997b) Effect of carbon dioxide-enriched water and fresh water on the cutaneous microcirculation and oxygen tension in the skin of the foot. Angiology 48:337–343

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Yamamoto N (2004) Decrease in heart rates by artificial CO2 hot spring bathing is inhibited by beta1-adrenoceptor blockade in anesthetized rats. J Appl Physiol 96:226–232

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa H, Hayashida Y (2002) Responses of autonomic cardiovascular systems induced by hypoxia: rebound phenomenon and species difference. J Uoeh 24:117–129

    PubMed  Google Scholar 

  • Komoto Y, Komoto T, Sunakawa M, Eguchi Y, Yorozu H, Kubo Y (1986) Dermal and subcutaneous tissue perfusion with a CO2 -bathing. Z Physiother Jg 38:103–112

    Google Scholar 

  • Krohn TC, Hansen AK, Dragsted N (2003) The impact of low levels of carbon dioxide on rats. Lab Anim 37:94–99

    Article  PubMed  CAS  Google Scholar 

  • Matz H, Orion E, Wolf R (2003) Balneotherapy in dermatology. Dermatol Ther 16:132–140

    Article  PubMed  Google Scholar 

  • McClellan W (1963) Carbon dioxide Baths. In: Lights S (ed) Physical medicine library new haven. Elizabeth Licht, pp 311–320

  • McClellan WLM, Doulin AT (1944) Physiologic effects of carbon dioxide water baths on alveolar carbon dioxide tension, skin temperature, and respiratory metabolism. Am Heart J 29:44–61

    Article  Google Scholar 

  • Merrick A, Hadley WM, Holcslaw TL (1979) The effect of large doses of atropine sulfate on heart rate and blood pressure in rats. Res Commun Chem Pathol Pharmacol 25:13–22

    PubMed  CAS  Google Scholar 

  • Nishimura N, Sugenoya J, Matsumoto T, Kato M, Sakakibara H, Nishiyama T, Inukai Y, Okagawa T, Ogata A (2002) Effects of repeated carbon dioxide-rich water bathing on core temperature, cutaneous blood flow and thermal sensation. Eur J Appl Physiol 87:337–342

    Article  PubMed  CAS  Google Scholar 

  • Pardini BJ, Lund DD, Schmid PG (1989) Organization of the sympathetic postganglionic innervation of the rat heart. J Auton Nerv Syst 28:193–201

    Article  PubMed  CAS  Google Scholar 

  • Perini R, Milesi S, Biancardi L, Pendergast DR, Veicsteinas A (1998) Heart rate variability in exercising humans: effect of water immersion. Eur J Appl Physiol 77:326–332

    Article  CAS  Google Scholar 

  • Pratzel H (1984) Aufnahme, Abgabe Stoffwechsel von CO2 beim Kohlensäurebad. Z phys Med Blan Med Klim 13:25–32

    Google Scholar 

  • Pump B, Shiraishi M, Gabrielsen A, Bie P, Christensen NJ, Norsk P (2001) Cardiovascular effects of static carotid baroreceptor stimulation during water immersion in humans. Am J Physiol Heart Circ Physiol 280:H2607–H2615

    PubMed  CAS  Google Scholar 

  • Savin E, Bailliart O, Bonnin P, Bedu M, Cheynel J, Coudert J, Martineaud JP (1995) Vasomotor effects of transcutaneous CO2 in stage II peripheral occlusive arterial disease. Angiology 46:785–791

    Article  PubMed  CAS  Google Scholar 

  • Schnizer W, Erdl R, Schops P, Seichert N (1985) The effects of external CO2 application on human skin microcirculation investigated by laser Doppler flowmetry. Int J Microcirc Clin Exp 4:343–350

    PubMed  CAS  Google Scholar 

  • Stein ID, Weinstein I (1942) The value of carbon dioxide baths in the treatment of peripheral vascular disease and allied conditions. Am Heart J 23:349–361

    Article  Google Scholar 

  • Tabrizchi R, King KA, Pang CC (1988) Pressor response to beta 1- and beta 2-blockers in conscious rats treated with phentolamine. Pharmacology 37:385–393

    PubMed  CAS  Google Scholar 

  • Tamaki Y, Nakayama T, Kanosue K (1989) Effects of peripheral chemo- and baro-receptor denervation on responses of preoptic thermosensitive neurons to inspired CO2. Pflügers Arch 414:495–499

    Article  PubMed  CAS  Google Scholar 

  • Toriyama T, Kumada Y, Matsubara T, Murata A, Ogino A, Hayashi H, Nakashima H, Takahashi H, Matsuo H, Kawahara H (2002) Effect of artificial carbon dioxide foot bathing on critical limb ischemia (Fontaine IV) in peripheral arterial disease patients. Int Angiol 21:367–373

    PubMed  CAS  Google Scholar 

  • Walker BR (1987) Cardiovascular effect of V1 vasopressinergic blockade during acute hypercapnia in conscious rats. Am J Physiol Regul Integr Comp Physiol 252:R127–R133

    CAS  Google Scholar 

  • Yoshino H, Curran-Everett DC, Hong SK, Krasney JA (1988) Altered heart rate-arterial pressure relation during head-out water immersion in conscious dog. Am J Physiol Regul Integr Comp Physiol 254:R595–R601

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. M Shibata (Yamanashi Institute of Environmental Sciences) for critical reading of the manuscript and to Mitsubishi Rayon Engineering (Tokyo, Japan) for providing the apparatus for producing artificial CO2-hot spring water (MRE-Spa, laboratory model). This study was funded in part by a JSPS Grant-in-Aid for Scientific Research (B)#16390057 to M.H. and a JSPS Grant-in-Aid for Young Scientists (B)# 17700478 to N.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, N., Hashimoto, M. Spinal cord transection inhibits HR reduction in anesthetized rats immersed in an artificial CO2-hot spring bath. Int J Biometeorol 51, 201–208 (2007). https://doi.org/10.1007/s00484-006-0055-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-006-0055-6

Keywords

Navigation