Skip to main content
Log in

Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Perennial ryegrass (Lolium perenne), an excellent grass for forage and turf, is widespread in temperate regions. Drought is an important factor that limits its growth, distribution, and yield. DNA methylation affects gene expression and plays an important role in adaptation to adverse environments. In this study, the DNA methylation changes in perennial ryegrass under drought stress were assessed using methylation-sensitive amplified polymorphism (MSAP). After 15 days of drought stress treatment, the plant height was less than half of the control, and the leaves were smaller and darker. Genome-wide, a total of 652 CCGG sites were detected by MSAP. The total methylation level was 57.67 and 47.39 % in the control and drought treatment, respectively, indicating a decrease of 10.28 % due to drought exposure. Fifteen differentially displayed DNA fragments in MSAP profiles were cloned for sequencing analysis. The results showed that most of the genes involved in stress responses. The relative expression levels revealed that three demethylated fragments were up-regulated. The expression of a predicted retrotransposon increased significantly, changing from hypermethylation to non-methylation. Although the extent of methylation in two other genes decreased, the sites of methylation remained, and the expression increased only slightly. All of these results suggested that drought stress decreased the total DNA methylation level in perennial ryegrass and demethylation up-regulated related gene expressions and that the extent of methylation was negatively correlated with expression. Overall, the induced epigenetic changes in genome probably are an important regulatory mechanism for acclimating perennial ryegrass to drought and possibly other environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant 121:472–480

    Article  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Banks JA, Masson P, Fedoroff N (1988) Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev 2:1364–1380

    Article  CAS  PubMed  Google Scholar 

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  PubMed  Google Scholar 

  • Baurens FC, Bonnot F, Bienvenu D, Causse S, Legavre T (2003) Using SD-AFLP and MSAP to assess CCGG methylation in the banana genome. Plant Mol Biol Report 21:339–348

    Article  CAS  Google Scholar 

  • Bender J (1998) Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem Sci 23:252–256

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2011) Genetic and epigenetic effects of plant-pathogen interactions: an evolutionary perspective. Mol Plant 4:1014–1023

    Article  CAS  PubMed  Google Scholar 

  • Byrne S, Hedegaard J, Panitz F, Bendixen C, Studer B, Farrell JD, Swain S, Armstead I, Caccamo M, Asp T (2011) De novo genome sequencing of perennial ryegrass (Lolium perenne L.). In: EUCARPIA: 29th Fodder Crops and Amenity Grass Section Meeting, Dublin, Ireland, p 23

  • Cervera MT, Ruiz-Garcia L, Martinez-Zapater J (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268:543–552

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty D, Yu K, Paek K (2003) Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Sci 165:61–68

    Article  CAS  Google Scholar 

  • Chen X, Ma Y, Chen F, Song W, Zhang L (2009) Analysis of DNA methylation patterns of PLBs derived from Cymbidium hybridium based on MSAP. Plant Cell, Tissue Organ Cult 98:67–77

    Article  CAS  Google Scholar 

  • Choi JK, Kim YJ (2008) Epigenetic regulation and the variability of gene expression. Nat Genet 40:141–147

    Article  CAS  PubMed  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    Article  CAS  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan H, Li T, Guan L, Li Z, Guo N, Cai Y, Lin Y (2012) Effects of exogenous nitric oxide on antioxidation and DNA methylation of Dendrobium huoshanense grown under drought stress. Plant Cell, Tissue Organ Cult 109:307–314

    Article  CAS  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Gruenbaum Y, Cedar H, Razin A (1981a) Restriction enzyme digestion of hemimethylated DNA. Nucleic Acids Res 9:2509–2515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981b) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    Article  CAS  PubMed  Google Scholar 

  • Hashida SN, Kitamura K, Mikami T, Kishima Y (2003) Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiol 132:1207–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hashida SN, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T (2006) The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell 18:104–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Iqbal K, Jin SG, Pfeifer GP, Szabó PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA 108:3642–3647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Kimatu JN, Diarso M, Song C, Agboola RS, Pang J, Qi X, Liu B (2011) DNA cytosine methylation alterations associated with aluminium toxicity and low pH in Sorghum bicolor. Afr J Agric Res 6:4579–4593

    Google Scholar 

  • Lamp CA, Forbes SJ, Cade JW (1990) Grasses of temperate Australia, a field guide. Inkata Press, Melbourne

    Google Scholar 

  • Lewin B (2008) Genes IX. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Li H, Freeling M, Lisch D (2010) Epigenetic reprogramming during vegetative phase change in maize. Proc Natl Acad Sci USA 107:22184–22189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S, Yeh CT, Ji T, Ying K, Wu H, Tang HM, Fu Y, Nettleton D, Schnable PS (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733

    Article  PubMed Central  PubMed  Google Scholar 

  • López-Maury L, Marguerat S, Bähler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583–593

    Article  PubMed  Google Scholar 

  • Lukens LN, Zhan S (2007) The plant genome’s methylation status and response to stress: implications for plant improvement. Curr Opin Plant Biol 10:317–322

    Article  CAS  PubMed  Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074

    Article  CAS  PubMed  Google Scholar 

  • McClelland M, Nelson M, Raschke E (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22:3640–3659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792-801

    Article  CAS  PubMed  Google Scholar 

  • Meng FR, Li YC, Yin J, Liu H, Chen XJ, Ni ZF, Sun QX (2012) Analysis of DNA methylation during the germination of wheat seeds. Bio Plantarum 56:269–275

    Article  CAS  Google Scholar 

  • Messeguer R, Ganal MW, Steffens JC, Tanksley SD (1991) Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol 16:753–770

    Article  CAS  PubMed  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng HH, Adrian B (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev 9:158–163

    Article  CAS  PubMed  Google Scholar 

  • Norris IB (1985) Relationships between growth and measured weather factors among contrasting varieties of Lolium, Dactylis and Festuca species. Grass Forage Sci 40:151–159

    Article  Google Scholar 

  • Pearson A, Cogan NOI, Baillie RC, Hand ML, Bandaranayake CK, Erb S, Wang J, Kearney GA, Gendall AR, Smith KF, Forster JW (2011) Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 122:609–622

    Article  PubMed  Google Scholar 

  • Peeters A (2004) Wild and sown grasses. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36–e36

    Article  PubMed Central  PubMed  Google Scholar 

  • Portis E, Acquadro A, Comino C, Lanteri S (2004) Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 166:169–178

    Article  CAS  Google Scholar 

  • Reyna-Lopez G, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710

    Article  CAS  PubMed  Google Scholar 

  • Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53:766–784

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Wang X, Yang G, Wu Y, Su S, Li S, Liu H, Yuan Y (2013) Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. J Plant Biol 56:32–38

    Article  CAS  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdzić M, Becker JD, Feijó JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Springer NM (2013) Epigenetics and crop improvement. Trends Genet 29:241–247

    Article  CAS  PubMed  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  PubMed  Google Scholar 

  • Turgeon AJ (1991) Turfgrass management. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Turner L, Holloway-Phillips M, Rawnsley R, Donaghy D, Pembleton K (2012) The morphological and physiological responses of perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.) and tall fescue (Festuca arundinacea Schreb.; syn. Schedonorus phoenix Scop.) to variable water availability. Grass Forage Sci 67:507–518

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van De Lee T, Hornes M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yaish MW (2013) DNA methylation-associated epigenetic changes in stress tolerance of plants. Molecular Stress Physiology of Plants, Springer, India, pp 427–440

    Google Scholar 

  • Yamada T (2013) Genetics, genomics and breeding of forage crops. CRC Press, Boca Rato

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Bai G, Liu S, Luo N, Wang Y, Richmond DS, Pijut PM, Jackson SA, Yu J, Jiang Y (2013a) Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J Exp Bot 64:1537–1551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Yang X, Wang H, Shi F, Liu Y, Liu J, Li L, Wang D, Liu B (2013b) Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses. PLoS ONE 8:e55772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Henikoff S (2007) Genome-wide analysis of DNA methylation patterns. Development 134:3959–3965

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their constructive comments and suggestions for improving the manuscript. This research was supported by the National High Technology Research and Development Program of China (863 Program) (2009AA10Z108, 2008AA10Z409) and the West Light Foundation of The Chinese Academy of Sciences (Y3C4011100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Rong Ma.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, XM., Tao, X., Wang, Y. et al. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. Mol Genet Genomics 289, 1075–1084 (2014). https://doi.org/10.1007/s00438-014-0869-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0869-6

Keywords

Navigation