Journal of Mathematical Biology

, Volume 73, Issue 4, pp 977–1000 | Cite as

Moment-flux models for bacterial chemotaxis in large signal gradients

  • Chuan Xue
  • Xige Yang


Chemotaxis is a fundamental process in the life of many prokaryotic and eukaryotic cells. Chemotaxis of bacterial populations has been modeled by both individual-based stochastic models that take into account the biochemistry of intracellular signaling, and continuum PDE models that track the evolution of the cell density in space and time. Continuum models have been derived from individual-based models that describe intracellular signaling by a system of ODEs. The derivations rely on quasi-steady state approximations of the internal ODE system. While this assumption is valid if cell movement is subject to slowly changing signals, it is often violated if cells are exposed to rapidly changing signals. In the latter case current continuum models break down and do not match the underlying individual-based model quantitatively. In this paper, we derive new PDE models for bacterial chemotaxis in large signal gradients that involve not only the cell density and flux, but also moments of the intracellular signals as a measure of the deviation of cell’s internal state from its steady state. The derivation is based on a new moment closure method without calling the quasi-steady state assumption of intracellular signaling. Numerical simulations suggest that the resulting model matches the population dynamics quantitatively for a much larger range of signals.


Chemotaxis Large signal gradient Derivation of PDE models 

Mathematics Subject Classification

92B05 92C17 92D25 35Q92 41A60 60J75 



The authors would like to thank Professor Hans G. Othmer from University of Minnesota and Professor Radek Erban from University of Oxford for insightful discussions during the early stage of this project. This research was supported by NSF DMS-1312966 and NSF CAREER Award 1553637 to CX. CX was also supported by the Mathematical Biosciences Institute as a long-term visitor.


  1. Adler J (1966) Chemotaxis in bacteria. Science 153:708–716CrossRefGoogle Scholar
  2. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387(6636):913–917. doi: 10.1038/43199 CrossRefGoogle Scholar
  3. Berg HC (1975) How bacteria swim. Sci Am 233:36–44Google Scholar
  4. Berg HC (1983) Random walks in biology. princeton University Press, PrincetonGoogle Scholar
  5. Berg HC, Brown D (1972) Chemotaxis in Escherichia Coli analyzed by three-dimensional tracking. Nature 239:502–507CrossRefGoogle Scholar
  6. Bray D, Levin MD, Lipkow K (2007) The chemotactic behavior of computer-based surrogate bacteria. Curr Biol 17(1):12–19. doi: 10.1016/j.cub.2006.11.027 CrossRefGoogle Scholar
  7. Butler SM, Camilli A (2004) Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc Natl Acad Sci 101(14):5018–5023. doi: 10.1073/pnas.0308052101 CrossRefGoogle Scholar
  8. Chalub FACC, Markowich PA, Perthame B, Schmeiser C (2004) Kinetic models for chemotaxis and their drift-diffusion limits. Monatshefte für Mathematik 142(1):123–141MathSciNetCrossRefzbMATHGoogle Scholar
  9. Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:1652–1655CrossRefGoogle Scholar
  10. Durney CH (2013) A two-component model for bacterial chemotaxis. Master’s thesis, The Ohio State UniversityGoogle Scholar
  11. Erban R, Othmer H (2005) From signal transduction to spatial pattern formation in E. coli: a paradigm for multiscale modeling in biology. Multiscale Model Simul 3(2):362–394MathSciNetCrossRefzbMATHGoogle Scholar
  12. Erban R, Othmer HG (2004) From individual to collective behavior in bacterial chemotaxis. SIAM J Appl Math 65(2):361–391MathSciNetCrossRefzbMATHGoogle Scholar
  13. Erban R, Othmer HG (2007) Taxis equations for amoeboid cells. J Math Biol 54:847–885MathSciNetCrossRefzbMATHGoogle Scholar
  14. Franz B, Erban R (2013) Hybrid modelling of individual movement and collective behaviour. In: Dispersal, individual movement and spatial ecology. Springer, pp 129–157Google Scholar
  15. Franz B, Xue C, Painter KJ, Erban R (2014) Travelling waves in hybrid chemotaxis models. Bull Math Biol 76(2):377–400. doi: 10.1007/s11538-013-9924-4 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457. doi: 10.1038/nrm2720 CrossRefGoogle Scholar
  17. Hazelbauer GL (2012) Bacterial chemotaxis: the early years of molecular studies. Annu Rev Microbiol 66:285–303. doi: 10.1146/annurev-micro-092611-150120 CrossRefGoogle Scholar
  18. Hillen T, Othmer HG (2000) The diffusion limit of transport equations derived from velocity-jump processes. SIAM J Appl Math 61(3):751–775MathSciNetCrossRefzbMATHGoogle Scholar
  19. Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2):183–217. doi: 10.1007/s00285-008-0201-3 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Horstmann D (2003) From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresbericht der DMV 105(3):103–165MathSciNetzbMATHGoogle Scholar
  21. Hugdahl MB, Beery JT, Doyle MP (1988) Chemotactic behavior of Campylobacter jejuni. Infect Immun 56(6):1560–1566Google Scholar
  22. Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44(1):1–8. doi: 10.1016/j.cyto.2008.06.017 CrossRefGoogle Scholar
  23. Kalinin YV, Jiang L, Tu Y, Wu M (2009) Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys J 96(6):2439–2448. doi: 10.1016/j.bpj.2008.10.027 CrossRefGoogle Scholar
  24. Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26:399–415CrossRefzbMATHGoogle Scholar
  25. Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30:225–234CrossRefzbMATHGoogle Scholar
  26. Koshland DE (1980) Bacterial chemotaxis as a model behavioral system. Raven Press, New YorkGoogle Scholar
  27. Lux R, Shi W (2004) Chemotaxis-guided movements in bacteria. Crit Rev Oral Biol Med 15(4):207–220CrossRefGoogle Scholar
  28. Othmer H, Xue C (2013) The mathematical analysis of biological aggregation and dispersal: progress, problems and perspectives. In: Lewis M, Maini P, Petrovskii S (eds) Dispersal, individual movement and spatial ecology: a mathematical perspective. SpringerGoogle Scholar
  29. Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26(3):263–298MathSciNetCrossRefzbMATHGoogle Scholar
  30. Othmer HG, Hillen T (2002) The diffusion limit of transport equations II: chemotaxis equations. SIAM J Appl Math 62:1222–1250MathSciNetCrossRefzbMATHGoogle Scholar
  31. Othmer HG, Painter KJ, Umulis D, Xue C (2009) The intersection of theory and application in elucidating pattern formation in developmental biology. Math Model Nat Phenom 4(4):3–82MathSciNetCrossRefzbMATHGoogle Scholar
  32. Othmer HG, Xin X, Xue C (2013) Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation. Int J Mol Sci 14(5):9205–9248CrossRefGoogle Scholar
  33. O’Toole R, Lundberg S, Fredriksson SA, Jansson A, Nilsson B, Wolf-Watz H (1999) The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J Bacteriol 181(14):4308–4317Google Scholar
  34. Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68(12):5789–5795CrossRefGoogle Scholar
  35. Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15:311–338MathSciNetCrossRefzbMATHGoogle Scholar
  36. Perthame B (2004) Pde models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl Math 49(6):539–564MathSciNetCrossRefzbMATHGoogle Scholar
  37. Rivero MA, Tranquillo RT, Buettner HM, Lauffenburger DA (1989) Transport models for chemotactic cell populations based on individual cell behavior. Chem Eng Sci 44(12):2881–2897CrossRefGoogle Scholar
  38. Saragosti J, Calvez V, Bournaveas N, Perthame B, Buguin A, Silberzan P (2011) Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc Natl Acad Sci 108(39):16,235–16,240CrossRefGoogle Scholar
  39. Si G, Tang M, Yang X (2014) A pathway-based mean-field model for E. coli chemotaxis: mathematical derivation and its hyperbolic and parabolic limits. Multiscale Model Simul 12(2):907–926MathSciNetCrossRefzbMATHGoogle Scholar
  40. Simons JE, Milewski PA (2011) The volcano effect in bacterial chemotaxis. Math Comput Model 53(7–8):1374–1388MathSciNetCrossRefzbMATHGoogle Scholar
  41. Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397. doi: 10.1016/j.tim.2006.07.001 CrossRefGoogle Scholar
  42. Sze CW, Zhang K, Kariu T, Pal U, Li C (2012) Borrelia burgdorferi needs chemotaxis to establish infection in mammals and to accomplish its enzootic cycle. Infect Immun 80(7):2485–2492. doi: 10.1128/IAI.00145-12 CrossRefGoogle Scholar
  43. Taylor-King JP, Franz B, Yates CA, Erban R (2015) Mathematical modelling of turning delays in swarm robotics. IMA J Appl Math, p hxv001Google Scholar
  44. Tindall MJ, Maini PK, Porter SL, Armitage JP (2008) Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull Math Biol 70(6):1570–1607. doi: 10.1007/s11538-008-9322-5 MathSciNetCrossRefzbMATHGoogle Scholar
  45. Tindall MJ, Porter SL, Maini PK, Gaglia G, Armitage JP (2008) Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Bull Math Biol 70(6):1525–1569. doi: 10.1007/s11538-008-9321-6 MathSciNetCrossRefzbMATHGoogle Scholar
  46. Tu Y (2013) Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. Annu Rev Biophys. doi: 10.1146/annurev-biophys-083012-130358
  47. Wadhams G, Armitage J (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5(12):1024–1037CrossRefGoogle Scholar
  48. Wang ZA (2013) Mathematics of traveling waves in chemotaxis. DCDS-B 18:601–641MathSciNetCrossRefzbMATHGoogle Scholar
  49. Williams SM, Chen YT, Andermann TM, Carter JE, McGee DJ, Ottemann KM (2007) Helicobacter pylori chemotaxis modulates inflammation and bacterium-gastric epithelium interactions in infected mice. Infect Immun 75(8):3747–3757. doi: 10.1128/IAI.00082-07 CrossRefGoogle Scholar
  50. Xin X, Othmer HG (2012) A “trimer of dimers”-based model for the chemotactic signal transduction network in bacterial chemotaxis. Bull Math Biol 74(10):2339–2382. doi: 10.1007/s11538-012-9756-7 MathSciNetCrossRefzbMATHGoogle Scholar
  51. Xue C (2015) Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J Math Biol 70(1–2):1–44. doi: 10.1007/s00285-013-0748-5 MathSciNetCrossRefzbMATHGoogle Scholar
  52. Xue C, Budrene EO, Othmer HG (2011) Radial and spiral stream formation in Proteus mirabilis colonies. PLoS Comput Biol 7(12):e1002,332CrossRefGoogle Scholar
  53. Xue C, Othmer HG (2009) Multiscale models of taxis-driven patterning in bacterial populations. SIAM J Appl Math 70(1):133–167MathSciNetCrossRefzbMATHGoogle Scholar
  54. Xue C, Othmer HG, Erban R (2009) From individual to collective behavior of unicellular organisms: recent results and open problems. In: Multiscale phenomena in biology: proceedings of the 2nd conference on mathematics and biology. AIP conference proceedings, vol 1167, no 1, pp 3–14Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations