Skip to main content
Log in

Taxis equations for amoeboid cells

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The classical macroscopic chemotaxis equations have previously been derived from an individual-based description of the tactic response of cells that use a “run-and-tumble” strategy in response to environmental cues [17,18]. Here we derive macroscopic equations for the more complex type of behavioral response characteristic of crawling cells, which detect a signal, extract directional information from a scalar concentration field, and change their motile behavior accordingly. We present several models of increasing complexity for which the derivation of population-level equations is possible, and we show how experimentally measured statistics can be obtained from the transport equation formalism. We also show that amoeboid cells that do not adapt to constant signals can still aggregate in steady gradients, but not in response to periodic waves. This is in contrast to the case of cells that use a “run-and-tumble” strategy, where adaptation is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt W. (1980). Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9: 147–177

    Article  MATH  MathSciNet  Google Scholar 

  2. Barkai N., Leibler S. (1997). Robustness in simple biochemical networks. Nature 387: 913–917

    Article  Google Scholar 

  3. Berg H.C. (1975). How bacteria swim. Sci. Am. 233: 36–44

    Article  Google Scholar 

  4. Berg H.C., Brown D.A. (1972). Chemotaxis in Escherichia Coli analysed by three-dimensional tracking. Nature 239(5374): 500–504

    Article  Google Scholar 

  5. Bourret, R.B., Stock, A.M.: Molecular information processing: lessons from bacterial chemotaxis. J. Biol. Chem. 277(12), 9625–9628, Review (2002)

    Google Scholar 

  6. Chalub F., Markowich P., Perthame B., Schmeiser C. (2004). Kinetic models for chemotaxis and their drift-diffusion limits. Monatshefte für Mathematik 142(1–2): 123–141

    Article  MATH  MathSciNet  Google Scholar 

  7. Chung, C.Y., Funamoto, S., Firtel, R.A.: Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem. Sci. 26(9), 557–566, Review (2001)

    Google Scholar 

  8. Condeelis, J., et al.: Mechanisms of ameboid chemotaxis: an evaluation of the cortical expansion model. Dev. Genet. 11, 333–340 (1990)

    Google Scholar 

  9. Dallon J. C., Othmer H.G. (1997). A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1351): 391–417

    Article  Google Scholar 

  10. Dallon J.C., Othmer H.G. (1998). A continuum analysis of the chemotactic signal seen by Dictyostelium discoideum. J. Theor. Biol. 194(4): 461–483

    Article  Google Scholar 

  11. Dickinson R.B., Tranquillo R.T. (1995). Transport equations and indices for random and biased cell migration based on single cell properties. SIAM J. Appl. Math. 55(5): 1419–54

    Article  MATH  MathSciNet  Google Scholar 

  12. Dolak, Y., Schmeiser, Y.: Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. 51(6) 595–615 (2005)

    Google Scholar 

  13. Erban, R.: From individual to collective behaviour in biological systems. Ph.D. thesis, University of Minnesota, 2005

  14. Erban R., Hwang H. (2006). Global existence results for the complex hyperbolic models of bacterial chemotaxis. Discret. Contin. Dyn. Syst. Ser. B 6: 1239–1260

    Article  MATH  MathSciNet  Google Scholar 

  15. Erban R., Kevrekidis I.G., Adalsteinsson D., Elston T.C. (2006). Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation. J. Chem. Phys. 124(8): 084106

    Article  Google Scholar 

  16. Erban, R., Kevrekidis, I.G., Othmer, H.G.: An equation-free computational approach for extracting population-level behavior from individual-based models of biological dispersal. Physica D 215, 1–24 (2006)

    Google Scholar 

  17. Erban R., Othmer H. (2004). From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math. 65(2): 361–391

    Article  MATH  MathSciNet  Google Scholar 

  18. Erban R., Othmer H.G. (2005). From signal transduction to spatial pattern formation in E. coli: a paradigm for multi-scale modeling in biology. Multiscale Model. Simul. 3(2): 362–394

    Article  MATH  MathSciNet  Google Scholar 

  19. Fisher P.R., Merkl R., Gerisch G. (1989). Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients. J. Cell Biol. 108: 973–984

    Article  Google Scholar 

  20. Ford, R., Lauffenburger, D.A.: A simple expression for quantifying bacterial chemotaxis using capillary assay data: application to the analysis of enhanced chemotactic responses from growth-limited cultures, Math. Biosci. 109(2), 127–150 (1992)

    Google Scholar 

  21. Geiger J., Wessels D., Soll D.R. (2003). Human polymorphonuclear leukocytes respond to waves of chemoattractant, like Dictyostelium. Cell Motil. Cytoskeleton 56(1): 27–44

    Article  Google Scholar 

  22. Gerisch G. (1982). Chemotaxis in Dictyostelium. Annu. Rev. Physiol. 44: 535–552

    Article  Google Scholar 

  23. Gerisch, G., Fromm, H., Huesgen, A., Wick, U.: Control of cell-contact sites by cyclic AMP pulses in differentiating Dictyostelium cells. Nature 255, 547–549 (1975)

    Google Scholar 

  24. Hillen T., Othmer H.G. (2000). The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61(3): 751–775

    Article  MATH  MathSciNet  Google Scholar 

  25. Höfer T., Maini P. (1997). Streaming instability of slime mold amoebae: an analytical model. phys. rev. e (statistical physics, plasmas, fluids and related interdisciplinary topics) 56(2): 1–7

    Google Scholar 

  26. Iijima, M., Huang, Y.E., Devreotes, P.: Temporal and spatial regulation of chemotaxis. Dev. Cell 3(4), 469–478, Review (2002)

    Google Scholar 

  27. Jin T., Zhang N., Long Y., Parent C.A., Devreotes P.N. (2000). Localization of the G protein βγ complex in living cells during chemotaxis. Science 287(5455): 1034–1036

    Article  Google Scholar 

  28. Keller E.F., Segel L.A. (1970). Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26: 399–415

    Article  Google Scholar 

  29. Kevrekidis I., Gear C., Hyman J., Kevrekidis P., Runborg O., Theodoropoulos K. (2003). Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1(4): 715–762

    MATH  MathSciNet  Google Scholar 

  30. Kollmann M., Lovdok L., Bartholome K., Timmer J., Sourjik V. (2005). Design principles of a bacterial signalling network. Nature 438(7067): 504–507

    Article  Google Scholar 

  31. Koshland D.E. (1980). Bacterial chemotaxis as a model behavioral system. Raven, New York

    Google Scholar 

  32. Krishnan J., Iglesias P. (2005). A modelling framework describing the enzyme regulation of membrane lipids underlying gradient perception in Dictyostelium cells II: input–output analysis. J. Theor. Biol. 235: 504–520

    Article  MathSciNet  Google Scholar 

  33. Lilly, B., Dallon, J.C., Othmer, H.G.: Pattern formation in a cellular slime mold. In: Doedel, E., Tuckerman, L.S. (eds.) Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems. IMA Proceedings, vol. 119 pp. 359–383. Springer, New York (2000)

  34. Martiel J.L., Goldbeter A. (1987). A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells. Biophys. J. 52: 807–828

    Article  Google Scholar 

  35. Mato J.M., Losada A., Nanjundiah V., Konijn T.M. (1975). Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum. Proc. Natl. Acad. Sci. 72: 4991–4993

    Article  Google Scholar 

  36. Meinhardt H. (1999). Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112(Pt17): 2867–2874

    Google Scholar 

  37. Mitchison T.J., Cramer L.P. (1996). Actin-based cell motility and cell locomotion. Cell 84(3): 371–379

    Article  Google Scholar 

  38. Othmer H.G., Dunbar S.R., Alt W. (1988). Models of dispersal in biological systems. J. Math. Biol. 26(3): 263–298

    Article  MATH  MathSciNet  Google Scholar 

  39. Othmer H.G., Hillen T. (2002). The diffusion limit of transport equations. Part II: chemotaxis equations. SIAM J Am 62: 1222–1260

    MATH  MathSciNet  Google Scholar 

  40. Othmer H.G., Schaap P. (1998). Oscillatory cAMP signaling in the development of Dictyostelium discoideum. Comments on Theor. Biol. 5: 175–282

    Google Scholar 

  41. Parent, C.A., Devreotes, P.N.: A cell’s sense of direction. Science 284(5415), 765–770, Review (1999)

    Google Scholar 

  42. Pate E., Othmer H.G. (1986). Differentiation, cell sorting and proportion regulation in the slug stage of Dictyostelium discoideum. J. Theor. Biol. 118: 301–319

    Article  MathSciNet  Google Scholar 

  43. Patlak C.S. (1953). Random walk with persistence and external bias. Bull. Math. Biophys. 15:   311–338

    MathSciNet  Google Scholar 

  44. Sheetz, M.P., Felsenfeld, D., Galbraith, C.G., et al.: Cell migration as a five-step cycle. Biochem. Soc. Symposia 65, 233–243 (1999)

    Google Scholar 

  45. Soll, D.R.: The use of computers in understanding how animal cells crawl. In: Jeon, K.W., Jarvik, J. (eds.) International Review of Cytology vol. 163, pp. 43–104. Academic, New York (1995)

  46. Sperb R.P. (1979). On a mathematical model describing the aggregation of amoebae. Bull. Math. Biol. 41: 555–572

    MATH  MathSciNet  Google Scholar 

  47. Spiro P.A., Parkinson J.S., Othmer H.G. (1997). A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 94(14): 7263–7268

    Article  Google Scholar 

  48. Swanson J., Taylor D.L. (1982). Local and spatially coordinated movements in Dictyostelium discoideum amoebae during chemotaxis. Cell 28: 225–232

    Article  Google Scholar 

  49. Tang Y., Othmer H.G. (1995). Excitation, oscillations and wave propagation in a G-protein-based model of signal transduction in Dictyostelium discoideum. Philos. Trans. R. Soc. Lond. B Biol. Sci. 349(1328): 179–95

    Article  Google Scholar 

  50. Tang Y., Othmer H.G. (1994). A G-protein-based model of adaptation in Dictyostelium discoideum. Math. Biosci. 120(1): 25–76

    Article  MATH  Google Scholar 

  51. Tranquillo R.T., Lauffenburger D.A. (1987). Stochastic model for leukocyte chemosensory movement. J. Math. Biol. 25(3): 229–262

    Article  MATH  MathSciNet  Google Scholar 

  52. Traynor D., Milne J.L., Insall R.H., Kay R.R. (2000). Ca(2+) signalling is not required for chemotaxis in Dictyostelium. EMBO J 19(17): 4846–4854

    Article  Google Scholar 

  53. Varnum-Finney B., Voss E., Soll D. (1987). Frequency and orientation of pseudopod formation of Dictyostelium discoideum amoebae chemotaxing in a spatial gradient: further evidence for a temporal mechanism. Cell Motil. Cytoskeleton 8(1): 18–26

    Article  Google Scholar 

  54. Wessels D., Murray J., Soll D.R. (1992). Behavior of Dictyostelium amoebae is regulated primarily by the temporal dynamic of the natural cAMP wave. Cell Motil. Cytoskeleton 23(2): 145–156

    Article  Google Scholar 

  55. Wessels, D.J., Zhang, H., Reynolds, J., Daniels, K., Heid, P., Lu, S., Kuspa, A., Shaulsky, G., Loomis, W.F., Soll, D.R.: The internal phosphodiesterase regA is essential for the suppression of lateral pseudopods during Dictyostelium chemotaxis. Mol. Biol. Cell 11(8), 2803–2820 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans G. Othmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erban, R., Othmer, H.G. Taxis equations for amoeboid cells. J. Math. Biol. 54, 847–885 (2007). https://doi.org/10.1007/s00285-007-0070-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0070-1

Keywords

Mathematics Subject Classification (2000)

Navigation