Skip to main content
Log in

Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis I: The Single Cell

  • Review Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mathematical modeling of bacterial chemotaxis systems has been influential and insightful in helping to understand experimental observations. We provide here a comprehensive overview of the range of mathematical approaches used for modeling, within a single bacterium, chemotactic processes caused by changes to external gradients in its environment. Specific areas of the bacterial system which have been studied and modeled are discussed in detail, including the modeling of adaptation in response to attractant gradients, the intracellular phosphorylation cascade, membrane receptor clustering, and spatial modeling of intracellular protein signal transduction. The importance of producing robust models that address adaptation, gain, and sensitivity are also discussed. This review highlights that while mathematical modeling has aided in understanding bacterial chemotaxis on the individual cell scale and guiding experimental design, no single model succeeds in robustly describing all of the basic elements of the cell. We conclude by discussing the importance of this and the future of modeling in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, J., 1966. Chemotaxis in bacteria. Science 153, 708–716.

    Article  Google Scholar 

  • Albert, R., Chiu, Y., Othmer, H., 2004. Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli. Biophys. J. 86, 2650–2659.

    Google Scholar 

  • Almogy, G., Stone, L., Ben-Tal, N., 2001. Multi-stage regulation, a key to reliable adaptive biochemical pathways. Biophys. J. 81, 3016–3028.

    Google Scholar 

  • Alon, U., Surette, M., Barkai, N., Leibler, S., 1999. Robustness in bacterial chemotaxis. Nature 397, 168–171.

    Article  Google Scholar 

  • Ames, P., Studert, C., Reiser, R., Parkinson, J., 2002. Collaborative signalling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl. Acad. Sci. 99, 7060–7065.

    Article  Google Scholar 

  • Andrews, S., Bray, D., 2004. Stochastic simulation of chemical reactions with spatial resolution and singled molecule detail. Phys. Biol. 1, 137–151.

    Article  Google Scholar 

  • Armitage, J., 1999. Bacterial tactic response. Adv. Microb. Physiol. 41, 229–289.

    Article  Google Scholar 

  • Arocena, M., Acerenza, L., 2004. Necessary conditions for a minimal model of receptor to show adaptive response over a wide range of levels of stimulus. J. Theor. Biol. 229, 45–57.

    Article  MathSciNet  Google Scholar 

  • Asakura, S., Honda, H., 1984. Two-state model for bacterial chemoreceptor proteins: The role of multiple methylation. J. Math. Biol. 176, 349–367.

    Google Scholar 

  • Barkai, N., Leibler, S., 1997. Robustness in simple biochemical networks. Nature 387, 913–917.

    Article  Google Scholar 

  • Berg, H., 2000. Constraints on models for the flagellar rotary motor. Philos. Trans. R. Soc. Lond. B 355, 491–501.

    Article  Google Scholar 

  • Berg, H., 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54.

    Article  Google Scholar 

  • Berg, H., Purcell, E., 1977. Physics of chemoreception. Biophys. J. 20, 193–219.

    Google Scholar 

  • Berry, R., Armitage, J., 1999. The bacterial flagellar motor. Adv. Microb. Physiol. 41, 291–337.

    Article  Google Scholar 

  • Beyerinck, M., 1895. Ueber Spirillum desulfuricans als ursache von sulfatreduction. Zentralbl. Bakteriol. Parasitenkd. 1, 1–9, 49–59, 104–14.

    Google Scholar 

  • Bialek, W., Setayeshgar, S., 2005. Physical limits to biochemical signalling. Proc. Natl. Acad. Sci. 102(29), 10040–10045.

    Article  Google Scholar 

  • Block, S., Segall, J., Berg, H., 1982. Impulse response in bacterial chemotaxis. Cell 31, 215–226.

    Article  Google Scholar 

  • Block, S., Segall, J., Berg, H., 1983. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154, 312–323.

    Google Scholar 

  • Bornhorst, J., Falke, J., 2001. Evidence that both ligand binding and covalent adaptation drive a two-state model equilibrium in the aspartate receptor signalling complex. J. Gen. Phys. 118, 693–710.

    Article  Google Scholar 

  • Bornhorst, J., Falke, J., 2003. Quantitative analysis of aspartate receptor signalling complex reveals that the homogenous two-state model is inadequate: Development of a heterogenous two-state model. J. Mol. Biol. 326, 1597–1614.

    Article  Google Scholar 

  • Bray, D., 2002. Bacterial chemotaxis and the question of gain. Proc. Natl. Acad. Sci. 99(1), 7–9.

    MathSciNet  Google Scholar 

  • Bray, D., Bourret, R., 1995. Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis. Mol. Biol. Cell 6, 1367–1380.

    Google Scholar 

  • Bray, D., Duke, T., 2004. Conformational spread: The propagation of allosteric states in large multiprotein complexes. Annu. Rev. Biophys. Biomol. Struct. 33(1), 53–73.

    Article  Google Scholar 

  • Bray, D., Bourret, R., Simon, M., 1993. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 4, 469–482.

    Google Scholar 

  • Bray, D., Levin, M., Morton-Firth, C., 1998. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393(7), 85–88.

    Article  Google Scholar 

  • Bren, A., Eisenbach, M., 2000. How signals are heard during bacterial chemotaxis: Protein–protein interactions in sensory signal propagation. J. Bacteriol. 182(24), 6865–6873.

    Article  Google Scholar 

  • Crissman, H., Darzynkiewicz, Z., Tobey, R., Steinkamp, J., 1985. Correlated measurements of DNA, RNA, and protein in individual cells by flow cytometry. Science 228, 1321–1324.

    Article  Google Scholar 

  • Darzynkiewicz, Z., Crissman, H., Traganos, F., Steinkamp, J., 1982. Cell heterogeneity during the cell cycle. J. Cell Physiol. 113, 465–474.

    Article  Google Scholar 

  • Delbrück, M., Reichardt, W., 1956. System analysis for the light growth reactions of Phycomyces. In D. Rudnick (Ed.), Cellular Mechanisms in Differentation and Growth, pp. 3–44. Princeton University Press, Princeton.

    Google Scholar 

  • Duke, T., Bray, D., 1999. Heightened sensitivity of a lattice of membrane receptors. Proc. Natl. Acad. Sci. 96, 10104–10108.

    Article  Google Scholar 

  • Duke, T., Novére, N.L., Bray, D., 2001. Conformational spread in a ring of proteins: A stochastic approach to allostery. J. Mol. Biol. 308, 541–553.

    Article  Google Scholar 

  • Eisenbach, M., 1990. Control of bacterial chemotaxis. Mol. Microbiol. 20, 903–910.

    Article  Google Scholar 

  • Eisenbach, M., Lengeler, J., Varon, M., Gutnick, D., Meili, R., Firtel, R., Segall, J., Omann, G., Tamada, A., Murakami, F., 2004. Chemotaxis. Imperial College Press, London.

    Google Scholar 

  • Emonet, T., Macal, C., North, M., Wickersham, C., Cluzel, P., 2005. Agentcell: A digital single-cell assay for bacterial chemotaxis. Bioinformatics 21(11), 2714–2721.

    Article  Google Scholar 

  • Endres, R., Wingreen, N., 2006. Precise adaptation in bacterial chemotaxis through “assistance neighbourhoods”. Proc. Natl. Acad. Sci. 103(35), 13040–13044.

    Article  Google Scholar 

  • Engelmann, T., 1881a. Neue methode zur untersuchung der sauerstoffaussheidung pflanzlicher und thierischer organismen. Pflugers Arch. Gesamte Physiol. Menschen Tiere 25, 285–292.

    Article  Google Scholar 

  • Engelmann, T., 1881b. Zur biologie der schizomyceten. Pflugers Arch. Gesamte Physiol. 26, 537.

    Article  Google Scholar 

  • Erban, R., Othmer, H., 2004. From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math. 65, 361–391.

    Article  MATH  MathSciNet  Google Scholar 

  • Erban, R., Othmer, H., 2005. From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modelling in biology. Multiscale Model. Simul. 3(2), 362–394.

    Article  MATH  MathSciNet  Google Scholar 

  • Garrity, L., Ordal, G., 1995. Chemotaxis in Bacillus subtilis: How bacteria monitor environmental signals. Pharmacol. Ther. 68(1), 87–104.

    Article  Google Scholar 

  • Goldbeter, A., Koshland, D., 1982. Simple molecular model for sensing and adaptation based on receptor modification with application to bacterial chemotaxis. J. Mol. Biol. 161, 395–416.

    Article  Google Scholar 

  • Goldman, J., Andrews, S., Bray, D., 2004. Size and composition of membrane protein clusters prediced by Monte Carlo analysis. Eur. Biophys. J. 33, 506–512.

    Article  Google Scholar 

  • Guo, C., Levine, H., 1999. A thermodynamic model for receptor clustering. Biophys. J. 77(5), 2358–2365.

    Google Scholar 

  • Guo, C., Levine, H., 2000. A statistical mechanics model for receptor clustering. J. Biol. Phys. 26(3), 219–234.

    Article  Google Scholar 

  • Hauri, D., Ross, J., 1995. A model of excitation and adaptation in bacterial chemotaxis. Biophys. J. 68, 708–722.

    Google Scholar 

  • Kim, S., Wang, W., Kim, K., 2002. Dynamic and clustering model of bacterial chemotaxis receptors: Structural basis for signalling and high sensitivity. Proc. Natl. Acad. Sci. 99(18), 11611–11615.

    Article  Google Scholar 

  • Koshland, D., 1977. A response regulator model in a simple sensory system. Science 196, 1055–1063.

    Article  Google Scholar 

  • Kreft, J., Booth, G., Wimpenny, J., 1998. Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 3275–3287.

    Google Scholar 

  • Kuo, S., Koshland, D., 1989. Multiple kinetic states for the flagellar motor switch. J. Bacteriol. 171(11), 6279–6287.

    Google Scholar 

  • Levin, M., Morton-Firth, C., Abouhamad, W., Bourret, R., Bray, D., 1998. Origins of individual swimming behavior in bacteria. Biophys. J. 74, 175–181.

    Article  Google Scholar 

  • Levin, M., Shimizu, T., Bray, D., 2002. Binding and diffusion of CheR molecules within a cluster of membrane receptors. Biophys. J. 82, 1809–1817.

    Google Scholar 

  • Levit, M., Stock, J., 2002. Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis. J. Biol. Chem. 277(39), 36760–36765.

    Article  Google Scholar 

  • Li, G., Weis, R., 2000. Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100, 357–365.

    Article  Google Scholar 

  • Li, M., Hazelbauer, G.L., 2005. Adaptational assistance in clusters of bacterial chemoreceptors. Mol. Microbiol. 56(6), 1617–1626.

    Article  Google Scholar 

  • Lipkow, K., 2006. Changing cellular location of CheZ predicted by molecular simulations. PLoS Comput. Biol. 2(4), 301–310.

    Article  Google Scholar 

  • Lipkow, K., Andrews, S., Bray, D., 2005. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. J. Bacteriol. 187(1), 45–53.

    Article  Google Scholar 

  • Lybarger, S., Maddock, J., 2001. Polarity in action: Asymmetric protein localization in bacteria. J. Bacteriol. 183(11), 3261–3267.

    Article  Google Scholar 

  • Macnab, R., Koshland, D., 1972. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. 69(9), 2509–2512.

    Article  Google Scholar 

  • Maddock, J., Shapiro, L., 1993. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259(9), 1717–1723.

    Article  Google Scholar 

  • Mello, B., Tu, Y., 2003a. Perfect and near-perfect adaptation in a model of bacterial chemotaxis. Biophys. J. 84, 2943–2956.

    Google Scholar 

  • Mello, B., Tu, Y., 2003b. Quantitative modeling of sensitivity in bacterial chemotaxis: The role of coupling among different chemoreceptor species. Proc. Natl. Acad. Sci. 100(14), 8223–8228.

    Article  Google Scholar 

  • Mello, B., Tu, Y., 2005. An allosteric model for heterogeneous receptor complexes: Understanding bacterial chemotaxis responses to multiple stimuli. Proc. Natl. Acad. Sci. 102(48), 17354–17359.

    Article  Google Scholar 

  • Mello, B., Shaw, L., Tu, Y., 2004. Effects of receptor interaction in bacterial chemotaxis. Biophys. J. 87, 1578–1595.

    Article  Google Scholar 

  • Metzler, R., Klafter, J., 2000. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77.

    Article  MATH  MathSciNet  Google Scholar 

  • Monod, J., Wyman, J., Changeux, J., 1965. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12, 88–118.

    Article  Google Scholar 

  • Morton-Firth, C., Bray, D., 1998. Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192, 117–128.

    Article  Google Scholar 

  • Morton-Firth, C., Shimizu, T., Bray, D., 1999. A free-energy based stochastic simulation of the Tar receptor complex. J. Mol. Biol. 286, 1059–1074.

    Article  Google Scholar 

  • Murray, J., 1993. Mathematical Biology, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  • Novère, N.L., Shimizu, T., 2001. Stochsim: Modelling of stochastic biomolecular processes. Bioinformatics 17, 575–576.

    Article  Google Scholar 

  • Pfeffer, W., 1888. Uber chemotaktische bewegungen von bacterien, flagellaten and volvocineen. Unters. Bot. Inst. Tübingen 2, 582.

    Google Scholar 

  • Rao, C., Frenklach, M., Arkin, A., 2004a. An allosteric model for transmembrane signalling in bacterial chemotaxis. J. Mol. Biol. 343, 291–303.

    Article  Google Scholar 

  • Rao, C., Kirby, J., Arkin, A., 2004b. Design and diversity in bacterial chemotaxis: A comparative study in Eschericia coli and Bacillus subtilis. PLoS Biol. 2(2), 239–252.

    Article  Google Scholar 

  • Segall, J., Block, S., Berg, H., 1986. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. 83(23), 8987–8991.

    Article  Google Scholar 

  • Segel, L., 1976. Incorporation of receptor kinetics into a model for bacterial chemotaxis. J. Theor. Biol. 57, 23–42.

    Article  MathSciNet  Google Scholar 

  • Segel, L., 1977. A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32(3), 653–665.

    Article  MATH  MathSciNet  Google Scholar 

  • Segel, L., Goldbeter, A., 1986. A mechanism for exact sensory adaptation based on receptor modification. J. Theor. Biol. 120, 151–179.

    Article  MathSciNet  Google Scholar 

  • Shi, Y., 2000. Adaptive Ising model and bacterial chemotactic receptor network. Eur. Lett. 50(1), 113–119.

    Article  Google Scholar 

  • Shi, Y., 2001. Effects of thermal fluctuation and the receptor–receptor interaction in bacterial chemotactic signalling and adaptation. Phys. Rev. E 64, 1–8.

    Article  Google Scholar 

  • Shi, Y., 2002. Clustering and signalling of cell receptors. Physica A 311, 199–212.

    Article  Google Scholar 

  • Shi, Y., Duke, T., 1998. Cooperative model of bacteria sensing. Phys. Rev. E 58(5), 6399–6406.

    Article  Google Scholar 

  • Shimizu, T., Aksenov, S., Bray, D., 2003. A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. J. Mol. Biol. 329, 291–309.

    Article  Google Scholar 

  • Shimizu, T., Novère, N.L., Levin, M., Beavil, A., Sutton, B., Bray, D., 2000. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat. Cell Biol. 2, 792–796.

    Article  Google Scholar 

  • Skoge, M., Endres, R., Wingreen, N., 2006. Receptor-receptor coupling in bacterial chemotaxis: Evidence for strongly coupled receptors. Biophys. J. 90, 4317–4326.

    Article  Google Scholar 

  • Sourjik, V., Berg, H., 2002a. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. 99, 12669–12674.

    Article  Google Scholar 

  • Sourjik, V., Berg, H., 2002b. Receptor sensitivity in bacterial chemotaxis. Proc. Natl. Acad. Sci. 99(1), 123–127.

    Article  Google Scholar 

  • Sourjik, V., Berg, H., 2004. Functional interactions between receptors in bacterial chemotaxis. Nature 428, 437–441.

    Article  Google Scholar 

  • Spiro, P., 1997. Mathematical studies of cell signal transduction. Ph.D. thesis, The University of Utah.

  • Spiro, P., Parkinson, J., Othmer, H., 1997. A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. 94, 7263–7268.

    Article  Google Scholar 

  • Spudich, J., Koshland, D., 1976. Non-genetic individuality: Changed in the single cell. Nature 262, 467–471.

    Article  Google Scholar 

  • Stock, J., Kersulis, G., Koshland, D., 1985. Neither methylating of demethylating enzymes are required for chemotaxis. Cell 42, 683–690.

    Article  Google Scholar 

  • Strong, S., Freedman, B., Bialek, W., Koberle, R., 1998. Adaptation and optimal chemotactic strategy for E. coli. Phys. Rev. E 57(4), 4604–4617.

    Article  Google Scholar 

  • Toda, M., Kubo, R., Saito, N., 1983. Statistical Physics I. Springer, Berlin.

    Google Scholar 

  • Wadhams, G., Armitage, J., 2004. Making sense of it all: Bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5(12), 1024–1037.

    Article  Google Scholar 

  • Wang, H., Matsumura, P., 1997. Phosphorylating and dephosphorylting protein complexes in bacterial chemotaxis. J. Bacteriol. 179, 287–289.

    Google Scholar 

  • Windisch, B., Bray, D., Duke, T., 2006. Balls and chains—a mesoscopic approach. Biophys. J. 91, 2383–2392.

    Article  Google Scholar 

  • Yi, T., Huang, Y., Simon, M., Doyle, J., 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. 97(9), 4649–4653.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Tindall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tindall, M.J., Porter, S.L., Maini, P.K. et al. Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis I: The Single Cell. Bull. Math. Biol. 70, 1525–1569 (2008). https://doi.org/10.1007/s11538-008-9321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9321-6

Keywords

Navigation