Skip to main content
Log in

Selectivity of plasma membrane calcium ATPase (PMCA)-mediated extrusion of toxic divalent cations in vitro and in cultured cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In the recent years, the toxicity of certain divalent cations has been associated with the alteration of intracellular Ca2+ homeostasis. Among other mechanisms, these cations may affect the functionality of certain Ca2+-binding proteins and/or Ca2+ pumps. The plasma membrane calcium pump (PMCA) maintains Ca2+ homeostasis in eukaryotic cells by mediating the efflux of this cation in a process coupled to ATP hydrolysis. The aim of this work was to investigate both in vitro and in cultured cells if other divalent cations (Sr2+, Ba2+, Co2+, Cd2+, Pb2+ or Be2+) could be transported by PMCA. Current results indicate that both purified and intact cell PMCA transported Sr2+ with kinetic parameters close to those of Ca2+ transport. The transport of Pb2+ and Co2+ by purified PMCA was, respectively, 50 and 75% lower than that of Ca2+, but only Co2+ was extruded by intact cells and to a very low extent. In contrast, purified PMCA—but not intact cell PMCA—transported Ba2+ at low rates and only when activated by limited proteolysis or by phosphatidylserine addition. Finally, purified PMCA did not transport Cd2+ or Be2+, although minor Be2+ transport was measured in intact cells. Moreover, Cd2+ impaired the transport of Ca2+ through various mechanisms, suggesting that PMCA may be a potential target of Cd2+-mediated toxicity. The differential capacity of PMCA to transport these divalent cations may have a key role in their detoxification, limiting their noxious effects on cell homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

[125I]TID-PC/16:

1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromethyl-3H- diazirin-3-yl)benzyl]oxy]carbonyl] nonanoyl]-sn-glycero-3-phosphocholine

C12E10 :

Polyoxyethylene 10 lauryl ether

CaM:

Calmodulin

DC:

Divalent cation

DMPC:

Dimyristoyl phosphatidylcholine

DMSO:

Dimethylsulfoxide

DTT:

Dithiothreitol

EGTA:

Ethylene glycol tetraacetic acid

eIOVs:

Erythrocyte inside-out vesicles

ER:

Endoplasmic reticulum

MOPS:

3-(N-morpholino)propanesulfonic acid

PC:

Phosphatidylcholine

PMCA:

Plasma membrane calcium pump

PS:

Phosphatidylserine

RB:

Reaction buffer

SERCA:

Sarco(endo)plasmic reticulum Ca2+-ATPase

SOCs:

Store-operated calcium channels

TG:

Thapsigargin

TLCK:

N-α-tosyl-l-lysine chloromethyl ketone

References

  • Aguilar-Dorado IC, Hernandez G, Quintanar-Escorza MA, Maldonado-Vega M, Rosas-Flores M, Calderon-Salinas JV (2014) Eryptosis in lead-exposed workers. Toxicol Appl Pharmacol 281(2):195–202

    Article  CAS  PubMed  Google Scholar 

  • Akatsu H, Hori A, Yamamoto T et al (2012) Transition metal abnormalities in progressive dementias. Biometals 25(2):337–350

    Article  CAS  PubMed  Google Scholar 

  • Bhoelan BS, Stevering CH, van der Boog AT, van der Heyden MA (2014) Barium toxicity and the role of the potassium inward rectifier current. Clin Toxicol (Phila) 52(6):584–593

    Article  CAS  Google Scholar 

  • Bouron A, Altafaj X, Boisseau S, De Waard M (2005) A store-operated Ca2+ influx activated in response to the depletion of thapsigargin-sensitive Ca2+ stores is developmentally regulated in embryonic cortical neurons from mice. Brain Res Dev Brain Res 159(1):64–71

    Article  CAS  PubMed  Google Scholar 

  • Breuer W, Epsztejn S, Millgram P, Cabantchik IZ (1995) Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am J Physiol 268(6 Pt 1):C1354–C1361

    Article  CAS  PubMed  Google Scholar 

  • Brooks SP, Storey KB (1992) Bound and determined: a computer program for making buffers of defined ion concentrations. Anal Biochem 201(1):119–126

    Article  CAS  PubMed  Google Scholar 

  • Chao SH, Suzuki Y, Zysk JR, Cheung WY (1984) Activation of calmodulin by various metal cations as a function of ionic radius. Mol Pharmacol 26(1):75–82

    CAS  PubMed  Google Scholar 

  • Emsley J (2001) Nature’s building blocks: an A-Z guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  • Ferreira-Gomes MS, Gonzalez-Lebrero RM, de la Fuente MC, Strehler EE, Rossi RC, Rossi JP (2011) Calcium occlusion in plasma membrane Ca2+-ATPase. J Biol Chem 286(37):32018–32025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filoteo AG, Enyedi A, Penniston JT (1992) The lipid-binding peptide from the plasma membrane Ca2+ pump binds calmodulin, and the primary calmodulin-binding domain interacts with lipid. J Biol Chem 267(17):11800–11805

    CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66(2):375–400

    CAS  Google Scholar 

  • Gramigni E, Tadini-Buoninsegni F, Bartolommei G, Santini G, Chelazzi G, Moncelli MR (2009) Inhibitory effect of Pb2+ on the transport cycle of the Na+, K+-ATPase. Chem Res Toxicol 22(10):1699–1704

    Article  CAS  PubMed  Google Scholar 

  • Habashi F (2013) Beryllium, physical and chemical properties. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, New York, pp 255–257

    Chapter  Google Scholar 

  • Harrop TC, Mascharak PK (2013) Cobalt-containing enzymes. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, New York, pp 684–690

    Chapter  Google Scholar 

  • Hechtenberg S, Beyersmann D (1991) Inhibition of sarcoplasmic reticulum Ca(2+)-ATPase activity by cadmium, lead and mercury. Enzyme 45(3):109–115

    Article  CAS  PubMed  Google Scholar 

  • Heldman E, Levine M, Raveh L, Pollard HB (1989) Barium ions enter chromaffin cells via voltage-dependent calcium channels and induce secretion by a mechanism independent of calcium. J Biol Chem 264(14):7914–7920

    CAS  PubMed  Google Scholar 

  • James P, Vorherr T, Krebs J et al (1989) Modulation of erythrocyte Ca2+-ATPase by selective calpain cleavage of the calmodulin-binding domain. J Biol Chem 264(14):8289–8296

    CAS  PubMed  Google Scholar 

  • Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208

    Article  PubMed  Google Scholar 

  • Kerper LE, Hinkle PM (1997) Cellular uptake of lead is activated by depletion of intracellular calcium stores. J Biol Chem 272(13):8346–8352

    Article  CAS  PubMed  Google Scholar 

  • Kwan CY, Putney JW Jr (1990) Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem 265(2):678–684

    CAS  PubMed  Google Scholar 

  • Liu C-Y, Lee NM, Wang T-H (1997) Chelation ion chromatography as a technique for trace elemental analysis in complex matrix samples. Anal Chim Acta 337(2):173–182

    Article  CAS  Google Scholar 

  • Lopreiato R, Giacomello M, Carafoli E (2014) The plasma membrane calcium pump: new ways to look at an old enzyme. J Biol Chem 289(15):10261–10268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangialavori I, Villamil Giraldo AM, Marino Buslje C, Ferreira Gomes M, Caride AJ, Rossi JP (2009) A new conformation in sarcoplasmic reticulum calcium pump and plasma membrane Ca2+ pumps revealed by a photoactivatable phospholipidic probe. J Biol Chem 284(8):4823–4828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangialavori I, Ferreira-Gomes M, Pignataro MF, Strehler EE, Rossi JP (2010) Determination of the dissociation constants for Ca2+ and calmodulin from the plasma membrane Ca2+ pump by a lipid probe that senses membrane domain changes. J Biol Chem 285(1):123–130

    Article  CAS  PubMed  Google Scholar 

  • Mangialavori IC, Corradi G, Rinaldi DE, de la Fuente MC, Adamo HP, Rossi JP (2012) Autoinhibition mechanism of the plasma membrane calcium pump isoforms 2 and 4 studied through lipid–protein interaction. Biochem J 443(1):125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marie PJ (2005) Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int 16(Suppl 1):S7–S10

    Article  CAS  PubMed  Google Scholar 

  • Mas-Oliva J (1989) Effect of lead on the erythrocyte (Ca2+, Mg2+)-ATPase activity calmodulin involvement. Mol Cell Biochem 89(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Niggli V, Penniston JT, Carafoli E (1979) Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem 254(20):9955–9958

    CAS  PubMed  Google Scholar 

  • Odaka M, Kobayashi M (2013) Cobalt proteins, overview. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, New York, pp 670–678

    Chapter  Google Scholar 

  • Panayi AE, Spyrou NM, Iversen BS, White MA, Part P (2002) Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J Neurol Sci 195(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Pfleger H, Wolf HU (1975) Activation of membrane-bound high-affinity calcium ion-sensitive adenosine triphosphatase of human erythrocytes by bivalent metal ions. Biochem J 147(2):359–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pors Nielsen S (2004) The biological role of strontium. Bone 35(3):583–588

    Article  CAS  PubMed  Google Scholar 

  • Quintanar-Escorza MA, Gonzalez-Martinez MT, del Pilar IO, Calderon-Salinas JV (2010) Oxidative damage increases intracellular free calcium [Ca2+]i concentration in human erythrocytes incubated with lead. Toxicol In Vitro 24(5):1338–1346

    Article  CAS  PubMed  Google Scholar 

  • Rega AF, Garrahan PJ (1986) The Ca2+ pump of plasma membranes. CRC Press, Boca Raton

    Google Scholar 

  • Rossi JP, Schatzmann HJ (1982) Is the red cell calcium pump electrogenic? J Physiol 327:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 24(1):15–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirran SL, Barran PE (2009) The use of ESI–MS to probe the binding of divalent cations to calmodulin. J Am Soc Mass Spectrom 20(6):1159–1171

    Article  CAS  PubMed  Google Scholar 

  • Silbergeld EK (1992) Mechanisms of lead neurotoxicity, or looking beyond the lamppost. FASEB J 6(13):3201–3206

    CAS  PubMed  Google Scholar 

  • Simons TJ (1993) Lead–calcium interactions in cellular lead toxicity. Neurotoxicology 14(2–3):77–85

    CAS  PubMed  Google Scholar 

  • Simonsen LO, Brown AM, Harbak H, Kristensen BI, Bennekou P (2011a) Cobalt uptake and binding in human red blood cells. Blood Cells Mol Dis 46(4):266–276

    Article  CAS  PubMed  Google Scholar 

  • Simonsen LO, Harbak H, Bennekou P (2011b) Passive transport pathways for Ca(2+) and Co(2+) in human red blood cells. (57)Co(2+) as a tracer for Ca(2+) influx. Blood Cells Mol Dis 47(4):214–225

    Article  CAS  PubMed  Google Scholar 

  • Simonsen LO, Harbak H, Bennekou P (2012) Cobalt metabolism and toxicology—a brief update. Sci Total Environ 432:210–215

    Article  CAS  PubMed  Google Scholar 

  • Steck TL, Weinstein RS, Straus JH, Wallach DF (1970) Inside-out red cell membrane vesicles: preparation and purification. Science 168(3928):255–257

    Article  CAS  PubMed  Google Scholar 

  • Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81(1):21–50

    Article  CAS  PubMed  Google Scholar 

  • Sumida M, Hamada M, Takenaka H, Hirata Y, Nishigauchi K, Okuda H (1986) Ca2+, Mg2+-ATPase of microsomal membranes from bovine aortic smooth muscle: effects of Sr2+ and Cd2+ on Ca2+ uptake and formation of the phosphorylated intermediate of the Ca2+, Mg2+-ATPase. J Biochem 100(3):765–772

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Chao SH, Zysk JR, Cheung WY (1985) Stimulation of calmodulin by cadmium ion. Arch Toxicol 57(3):205–211

    Article  CAS  PubMed  Google Scholar 

  • Thastrup O, Dawson AP, Scharff O et al (1989) Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions 27(1–2):17–23

    Article  CAS  PubMed  Google Scholar 

  • Thevenod F (2010) Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals 23(5):857–875

    Article  CAS  PubMed  Google Scholar 

  • Thevenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87(10):1743–1786

    Article  CAS  PubMed  Google Scholar 

  • Thomas RC (2009) The plasma membrane calcium ATPase (PMCA) of neurones is electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded. J Physiol 587(2):315–327

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Maciel A, Goncalves-Gomes S, de Gouveia Castex M, Vieyra A (1998) Progressive inactivation of plasma membrane (Ca2++Mg2+)ATPase by Cd2+ in the absence of ATP and reversible inhibition during catalysis. Biochemistry 37(44):15261–15265

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2013) Beryllium as antigen. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, New York, pp 251–255

    Chapter  Google Scholar 

  • Vats YA, Fedirko NV, Klevets MY, Voitenko NV (2002) Role of SH groups in the functioning of Ca2+-transporting ATPases regulating Ca2+ homeostasis and exocytosis. Neurophysiology 34(1):5–12

    Article  CAS  Google Scholar 

  • Verbost PM, Flik G, Pang PK, Lock RA, Wendelaar Bonga SE (1989) Cadmium inhibition of the erythrocyte Ca2+ pump. A molecular interpretation. J Biol Chem 264(10):5613–5615

    PubMed  Google Scholar 

  • Verstraeten SV (2014) Participation of reactive oxygen species in the toxicity of cobalt, nickel, cadmium and mercury. In: Catalá A (ed) Reactive oxygen species, lipid peroxidation and protein oxidation. Nova Science Publishers Inc., New York, pp 95–126

    Google Scholar 

  • Yuan Y, Jiang CY, Xu H et al (2013) Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. PLoS One 8(5):e64330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Secretaria de Ciencia y Técnica de la Universidad de Buenos Aires (UBACyT), Argentina. Authors are grateful to Dr. Osvaldo Rey for the generous gift of HEK293T cells.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandra V. Verstraeten or Juan Pablo F. C. Rossi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

204_2017_2031_MOESM1_ESM.tif

Supplementary Fig. 1. Fura-2 is not a good sensor for cell Co2+ uptake. HEK293T cells were loaded with the fluorescent probe Fura-2. Cells were pre-incubated for 30 min with 1 µM TG, either in the absence (closed circles) or in the presence (open circles) of 100 µM La3+, and baseline fluorescence was recorded for 2 min. The arrow indicates the moment when 1 mM Co2+ was added to the cells and the kinetics of Fura-2 fluorescence intensity was recorded. Results are shown as the mean ± SD (n = 3) (TIFF 76 kb)

204_2017_2031_MOESM2_ESM.tif

Supplementary Fig. 2. Ca2+ increases CaM auto-fluorescence. Fluorescence emission spectra of CaM (5 µM) were determined in samples without added Ca2+ (gray solid line), or containing 150 µM Ca2+ (black solid line) or 1 mM EGTA (dashed line). Traces correspond to a representative experiment (TIFF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira-Gomes, M.S., Mangialavori, I.C., Ontiveros, M.Q. et al. Selectivity of plasma membrane calcium ATPase (PMCA)-mediated extrusion of toxic divalent cations in vitro and in cultured cells. Arch Toxicol 92, 273–288 (2018). https://doi.org/10.1007/s00204-017-2031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-2031-9

Keywords

Navigation