Skip to main content

Cobalt-containing Enzymes

  • Reference work entry
Encyclopedia of Metalloproteins

Synonyms

Cobalamin; Corrin; Hydrolases; Isomerases; Nitrile hydratase; Ribonucleotide reductase

Introduction

Among the metals of the first transition series, cobalt (Co) is next to iron (Fe) and exhibits three oxidation states (+1, +2, and +3) much like its congener iron (+2, +3, and +4). However, unlike iron, it is present in a relatively small number of enzymes and cofactors (Kobayashi and Shimizu 1999). In addition, it does not participate in oxygen activation, a process that iron frequently takes part in. In the +3 oxidation state, cobalt enjoys high crystal field stabilization energy (CFSE) in several coordination geometries. Significantly, high stability arises when Co3+ exists in spin-paired (low-spin) electronic configuration within an octahedral coordination environment of strong ligands. Such stability often makes the Co3+center resistant to substitution processes such as exchange of a bound water molecule for the substrate. Such a center however can serve as a strong Lewis...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arakawa T, Kawano Y et al (2006) Structure of thiocyanate hydrolase: a new nitrile hydratase family protein with a novel five-coordinate cobalt(III) center. J Mol Biol 366:1497–1509

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Kawano Y et al (2009) Structural basis for catalytic activation of thiocyanate hydrolase involving metal-ligated cysteine modification. J Am Chem Soc 131:14838–14843

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R (2003) Radical carbon skeleton rearrangements: catalysis by coenzyme B12-dependent mutases. Chem Rev 103:2083–1094

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Ragsdale S (2003) The many faces of vitamin B12 catalysis by cobalamin-dependent enzymes. Annu Rev Biochem 72:209–247

    Article  CAS  PubMed  Google Scholar 

  • Harrop T, Mascharak P (2004) Fe(III) and Co(III) centers with carboxamido nitrogen and modified sulfur coordination: lessons learned from nitrile hydratase. Acc Chem Res 37:253–260

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Shimizu S (1998) Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat Biotechnol 16:733–736

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M, Mathews R (1997) Structure-based perspectives on B12-dependent enzymes. Annu Rev Biochem 66:269–313

    Article  CAS  PubMed  Google Scholar 

  • Mascharak P (2002) Structural and functional models of nitrile hydratase. Coord Chem Rev 225:201–214

    Article  CAS  Google Scholar 

  • Mathews R (2001) Cobalamin-dependent methytransferases. Acc Chem Res 34:681–689

    Article  CAS  Google Scholar 

  • Miyanaga A, Fushinobu S et al (2001) Crystal structure of cobalt-containing nitrile hydratase. Biochem Biophys Res Commun 288:1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Nordlund P, Reichard P (2006) Ribonucleotide reductase. Ann Rev Biochem 75:681–706

    Article  CAS  PubMed  Google Scholar 

  • Shibata N, Tamagaki H et al (2010) Crystal structure of ethanolamine ammonia-lyase complexes with coenzyme B12 analogs and substrates. J Biol Chem 285:26484–26493

    Article  CAS  PubMed  Google Scholar 

  • Sintchak M, Arjara G, Kellogg B, Stubbe J, Drennan C (2002) The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer. Nat Struct Biol 9:293–300

    Article  CAS  PubMed  Google Scholar 

  • Stubbe J, van der Donk W (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705–762

    Article  CAS  PubMed  Google Scholar 

  • Thomä N, Evans P et al (2000) Protection of radical intermediates at the active site of adenosylcobalamin-dependent methylmalonyl-CoA mutase. Biochemistry 39:9213–9221

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip K. Mascharak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Harrop, T.C., Mascharak, P.K. (2013). Cobalt-containing Enzymes. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1533-6_71

Download citation

Publish with us

Policies and ethics