Skip to main content

Divers Models of Divalent Cation Interaction to Calcium-Binding Proteins: Techniques and Anthology

  • Protocol
  • First Online:
Calcium-Binding Proteins and RAGE

Part of the book series: Methods in Molecular Biology ((MIMB,volume 963))

Abstract

Intracellular Ca2+-binding proteins (CaBPs) are sensors of the calcium signal and several of them even shape the signal. Most of them are equipped with at least two EF-hand motifs designed to bind Ca2+. Their affinities are very variable, can display cooperative effects, and can be modulated by physiological Mg2+ concentrations. These binding phenomena are monitored by four major techniques: equilibrium dialysis, fluorimetry with fluorescent Ca2+ indicators, flow dialysis, and isothermal titration calorimetry. In the last quarter of the twentieth century reports on the ion-binding characteristics of several abundant wild-type CaBPs were published. With the advent of recombinant CaBPs it became possible to determine these properties on previously inaccessible proteins. Here I report on studies by our group carried out in the last decade on eight families of recombinant CaBPs, their mutants, or truncated domains. Moreover this chapter deals with the currently used methods for quantifying the binding of Ca2+ and Mg2+ to CaBPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parekh AB (2011) Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 36:78–87

    Article  PubMed  CAS  Google Scholar 

  2. Rizzuto R, Pozzan T (2006) Microdomains of intracellular calcium: molecular determinants and functional consequences. Physiol Rev 86:369–408

    Article  PubMed  CAS  Google Scholar 

  3. Wnuk W, Cox JA, Stein EA (1982) Parvalbumins and other soluble sarcoplasmic Ca-binding proteins. In: Cheung WY (ed) Calcium and cell function, vol II. Academic, New York, pp 243–278

    Google Scholar 

  4. Milos M, Schaer J-J, Comte M, Cox JA (1986) Calcium-proton and calcium-magnesium antagonism in calmodulin. Biochemistry 25:6279–6287

    Article  PubMed  CAS  Google Scholar 

  5. Heizmann CW, Cox JA (1998) New perspectives on S100 proteins: a multifunctional Ca2+-, Zn2+- and Cu2+-binding protein family. Biometals 11:383–397

    Article  PubMed  CAS  Google Scholar 

  6. Mamar-Bachi A, Cox JA (1987) Quantitative analysis of the free energy coupling in the system calmodulin, calcium, smooth muscle myosin light chain kinase. Cell Calcium 8: 473–482

    Article  PubMed  CAS  Google Scholar 

  7. Cox JA (1988) Interactive properties of calmodulin. Biochem J 249:621–629

    PubMed  CAS  Google Scholar 

  8. Cox JA (1996) Techniques for measuring the binding of Ca2+ and Mg2+ to calcium-binding proteins. In: Celio MR, Pauls T, Schwaller B (eds) Guidebook to the calcium-binding proteins. Oxford University Press, Oxford, pp 1–12

    Google Scholar 

  9. Vito P, Lacana E, D’Adamio L (1996) Interfering with apoptosis: Ca2+-binding protein ALG-2 and Alzheimers’ disease gene. Science 271:521–525

    Article  PubMed  CAS  Google Scholar 

  10. Tarabykina S et al (2000) Two forms of the apoptosis-linked protein ALG-2 with different Ca2+ affinities and target recognition. J Biol Chem 275:10514–10518

    Article  PubMed  CAS  Google Scholar 

  11. Jia J et al (2001) Structure of apoptosis-linked gene product ALG-2: insights into Ca2+-induced changes in penta-EF-hand proteins. Structure 9:267–275

    Article  PubMed  CAS  Google Scholar 

  12. Subramanian L et al (2004) Ca2+ binding to EF-hands 1 and 3 is essential for the interaction of apoptosis-linked gene-2 with Alix/AIP1 in ocular melanoma. Biochemistry 43:11175–11186

    Article  PubMed  CAS  Google Scholar 

  13. Lollike K et al (2001) Biochemical characterization of the penta-EF-hand protein grancalcin and identification of L-plastin as a binding ­partner. J Biol Chem 276:17762–17769

    Article  PubMed  CAS  Google Scholar 

  14. Jia J et al (2000) Crystal structure of human grancalcin, a member of the penta-EF-hand protein family. J Mol Biol 300:1271–1281

    Article  PubMed  CAS  Google Scholar 

  15. Méhul B, Bernard D, Simonetti L, Bernard MA, Schmidt R (2000) Identification and cloning of a new calmodulin-like protein from human epidermis. J Biol Chem 275:12841–12847

    Article  PubMed  Google Scholar 

  16. Durussel I et al (2001) Cation- and peptide-binding properties of human calmodulin-like skin protein. Biochemistry 41:5439–5448

    Article  Google Scholar 

  17. Schwaller B, Celio MR, Hunziker W (1995) Alternative splicing of calretinin mRNA leads to different forms of calretinin. Eur J Biochem 230:424–430

    Article  PubMed  CAS  Google Scholar 

  18. Schwaller B et al (1997) Comparison of the Ca2+-binding properties of human recombinant calretinin-22k and calretinin. J Biol Chem 272:29663–29671

    Article  PubMed  CAS  Google Scholar 

  19. Leclerc E, Heizmann CW (2011) The importance of the Ca2+/Zn2+ signaling proteins and RAGE in translational medicine. Front Biosci (Schol Ed) S3:1232–1262

    Article  CAS  Google Scholar 

  20. Schäfer BW et al (2000) Brain S100A5 is a novel calcium-, zinc-, and copper-binding protein of the EF-hand superfamily. J Biol Chem 275:30623–30630

    Article  PubMed  Google Scholar 

  21. Ridinger K et al (2000) S100A3 Biochemical characterisation and subcellular localization in different cell lines. J Biol Chem 275:8686–8694

    Article  PubMed  CAS  Google Scholar 

  22. Hsieh H-L, Schäfer BW, Cox JA, Heizmann CW (2002) S100A13 and S100A6 exhibit distinct translocation pathways in endothelial cells. J Cell Sci 115:3249–3258

    Google Scholar 

  23. Sturchler E et al (2006) S100A16, a novel calcium-binding protein of the EF-hand superfamily. J Biol Chem 281:38905–38917

    Article  PubMed  CAS  Google Scholar 

  24. Hermann A, Cox JA (1995) Sarcoplasmic calcium-binding proteins. Comp Biochem Physiol 111B:337–345

    CAS  Google Scholar 

  25. Tossavainen H et al (2003) NMR solution structure of calerythrin, an EF-hand calcium-binding protein of Saccharopolyspora erythraea. Eur J Biochem 270:2505–2512

    Article  PubMed  CAS  Google Scholar 

  26. Head JF, Inouye S, Teranishi K, Shimomura O (2000) The crystal structure of the ­photoprotein aequorin at 2.3 Å resolution. Nature 405:372–376

    Article  PubMed  CAS  Google Scholar 

  27. Gombos Z et al (2001) Calexcitin B is a new member of the sarcoplasmic calcium-binding protein family. J Biol Chem 276:22529–22536

    Article  PubMed  CAS  Google Scholar 

  28. Nelson TJ et al (1999) Calexcitin interacts with neuronal ryanodine receptors. Biochem J 341:423–433

    Article  PubMed  CAS  Google Scholar 

  29. Gombos Z et al (2003) Conformational coupling of Mg2+ and Ca2+ on the three-state folding of calexcitin B. Biochemistry 42:5531–5539

    Article  PubMed  CAS  Google Scholar 

  30. Erskine PT et al (2006) Structure of the neuronal protein calexcitin suggests a mode of interaction in signalling pathways of learning and memory. J Mol Biol 357:1536–1547

    Article  PubMed  CAS  Google Scholar 

  31. Kilmartin JV (2003) Sfip has conserved centrin-binding sites and an essential function in budding yeast spindle body duplication. J Cell Biol 162:1211–1221

    Article  PubMed  CAS  Google Scholar 

  32. Salisbury JL (2004) Sfip and centrin unravel a structural riddle. Curr Biol 14:R27–R29

    Article  PubMed  CAS  Google Scholar 

  33. Durussel I et al (2000) Cation- and peptide-binding properties of human centrin 2. FEBS Lett 472:208–212

    Article  PubMed  CAS  Google Scholar 

  34. Matei E et al (2003) The C-terminal half of human centrin 2 behaves like a regulatory EF-hand domain. Biochemistry 42:1439–1450

    Article  PubMed  CAS  Google Scholar 

  35. Cox JA et al (2005) Calcium and magnesium binding to human centrin 3 and interaction with target peptides. Biochemistry 44:840–850

    Article  PubMed  CAS  Google Scholar 

  36. Veeraghavan S et al (2002) Structural independence of the two EF-hands of caltractin. J Biol Chem 277:28564–28571

    Article  Google Scholar 

  37. Radu L et al (2010) Scherffelia dubia centrin exhibits a specific mechanism for Ca2+-controlled target binding. Biochemistry 49:4383–4394

    Article  PubMed  CAS  Google Scholar 

  38. Li S et al (2006) Structural role of Sfip-centrin filaments in budding yeast spindle pole body duplication. J Cell Biol 173:867–877

    Article  PubMed  CAS  Google Scholar 

  39. Miron S et al (2011) Binding of calcium, magnesium, and target peptides to Cdc31, the centrin of yeast Saccharomyces cerevisiae. Biochemistry 50:6409–6422

    Article  PubMed  CAS  Google Scholar 

  40. Banfi B et al (2001) A calcium-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601

    Article  PubMed  CAS  Google Scholar 

  41. Banfi B et al (2004) Mechanism of Ca2+ activation of NADPH oxidase 5 (NOX5). J Biol Chem 279:18383–18591

    Google Scholar 

  42. Tirone F, Radu L, Craescu CT, Cox JA (2010) Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5. Biochemistry 49:761–771

    Article  PubMed  CAS  Google Scholar 

  43. Tirone F, Cox JA (2007) NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. FEBS Lett 581:1202–1208

    Article  PubMed  CAS  Google Scholar 

  44. Linse S, Thulin E, Sellers P (1993) Disulfide bonds in homo- and heterodimers of EF-hand subdomains of calbindin D9k, stability, calcium binding and NMR studies. Protein Sci 2:985–1000

    Article  PubMed  CAS  Google Scholar 

  45. Colowick SP, Womack FC (1969) Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis. J Biol Chem 244:774–777

    PubMed  CAS  Google Scholar 

  46. Wiseman T, Williston S, Brands JF, Lin L-N (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137

    Article  PubMed  CAS  Google Scholar 

  47. Osawa M et al (2005) Mg2+ and Ca2+ differentially regulated DNA binding and dimerization of DREAM. J Biol Chem 280:18008–18014

    Article  PubMed  CAS  Google Scholar 

  48. Hummel JP, Dryer WJ (1962) Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta 63:530–532

    Article  PubMed  CAS  Google Scholar 

  49. Cornish-Bowden A, Koshland DE (1975) Diagnostic use of the hill (Logit and Nernst) plots. J Mol Biol 95:201–212

    Article  PubMed  CAS  Google Scholar 

  50. Linse S, Forsen S (1995) Determinants that govern high-affinity calcium binding. Adv Second Messenger Phosphoprotein Res 30:89–151

    Article  PubMed  CAS  Google Scholar 

  51. Klotz IM, Hunston DL (1979) Protein affinities for small molecules: conceptions and misconceptions. Arch Biochem Biophys 193: 314–428

    Article  PubMed  CAS  Google Scholar 

  52. Potter JD, Gergely J (1975) The calcium and magnesium binding on troponin and their role in the regulation of myofibrillar ATPase. J Biol Chem 250:4628–4633

    PubMed  CAS  Google Scholar 

  53. Moeschler H, Schaer J-J, Cox JA (1980) A thermodynamic analysis of the binding of calcium and magnesium ions to parvalbumin. Eur J Biochem 111:73–78

    Article  PubMed  CAS  Google Scholar 

  54. Engelborghs Y et al (1990) Kinetics of conformational changes in Nereis calcium-binding protein upon calcium and magnesium binding. J Biol Chem 265:18801–18815

    Google Scholar 

  55. Luan-Rilliet Y, Milos M, Cox JA (1992) Thermodynamics of cation binding to Nereis sarcoplasmic calcium-binding protein. Direct binding studies, microcalorimetry and conformational changes. Eur J Biochem 208:133–138

    Article  PubMed  CAS  Google Scholar 

  56. Milos M, Comte M, Schaer J-J, Cox JA (1989) Evidence for four capital and six auxiliary cation-binding sites of calmodulin: divalent cation interactions monitored by direct binding and microcalorimetry. J Inorg Biochem 25:6279–6287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos A. Cox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cox, J.A. (2013). Divers Models of Divalent Cation Interaction to Calcium-Binding Proteins: Techniques and Anthology. In: Heizmann, C. (eds) Calcium-Binding Proteins and RAGE. Methods in Molecular Biology, vol 963. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-230-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-230-8_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-229-2

  • Online ISBN: 978-1-62703-230-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics