Skip to main content
Log in

Analysis of ball-burnishing impact on barrier properties of wood workpieces

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Analyzed in this paper are barrier properties of wood specimens treated by ball burnishing. For the purpose of experimental investigation, special device was designed which allows continuous monitoring of the volume of water absorbed by specimen within particular time intervals. The device allows water pressurized at 3 bar to efficiently penetrate specimen internal structure over its burnished/non-burnished surface interface. The experimental investigation encompassed six types of wood—beech, acacia, walnut, oak, linden, and ash tree. Comparative analysis was performed to establish relative resistance to water penetration in burnished and non-burnished specimens, as well as the quantities of water volume absorbed over time. The results indicate that ball burnishing is capable of enhancing barrier properties in all of the examined types of wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tian Y, Shin YC (2007) Laser-assisted burnishing of metals. Int J Mach Tools Manuf 47:14–22. doi:10.1016/j.ijmachtools.2006.03.002

    Article  Google Scholar 

  2. Tang J, Luo HY, Zhang YB (2016) Enhancing the surface integrity and corrosion resistance of Ti-6Al-4 V titanium alloy through cryogenic burnishing. Int J Adv Manuf Technol doi. doi:10.1007/s00170-016-9000-y

    Google Scholar 

  3. Lopez de Lacalle LN, Rodriguez A, Lamikiz A, Celaya A, Alberdi R (2011) Five-Axis machining and burnishing of complex parts for the improvement of surface roughness. Mater Manuf Process 26:997–1003. doi:10.1080/10426914.2010.529589

    Article  Google Scholar 

  4. Grochala D, Berczynski S, Grzadziel Z (2014) Stress in the surface layer of objects burnished after milling. Int J Adv Manuf Technol 72:1655–1663. doi:10.1007/s00170-014-5775-x

    Article  Google Scholar 

  5. Shiou FJ, Banh QN (2016) Development of an innovative small ball-burnishing tool embedded with a load cell. Int J Adv Manuf Technol doi. doi:10.1007/s00170-016-8413-y

    Google Scholar 

  6. El-Taweel TA, El-Axir MH (2009) Analysis and optimization of the ball burnishing process through the Taguchi technique. Int J Adv Manuf Technol 41:301–310. doi:10.1007/s00170-008-1485-6

    Article  Google Scholar 

  7. Banh QN, Shiou FJ (2016) Determination of optimal small ball-burnishing parameters for both surface roughness and superficial hardness improvement of STAVAX. Arab J Sci Eng 41:639–652. doi:10.1007/s13369-015-1710-1

    Article  Google Scholar 

  8. Abu Shreehah TA (2008) Developing and investigating of elastic ball burnishing tool. Int J Adv Manuf Technol 36:270–279. doi:10.1007/s00170-006-0838-2

    Article  Google Scholar 

  9. Revankar GD, Shetty R, Rao SS, Gaitonde VN (2014) Analysis of surface roughness and hardness in ball burnishing of titanium alloy. Measurement 58:256–268. doi:10.1016/j.measurement.2014.08.043

    Article  Google Scholar 

  10. Hamadache H, Zemouri Z, Laouar L, Dominiak S (2014) Improvement of surface conditions of 36 Cr Ni Mo 6 steel by ball burnishing process. J Mech Sci Technol 28:1491–1498. doi:10.1007/s12206-014-0135-1

    Article  Google Scholar 

  11. Yuan X, Sun Y, Li C, Liu W (2017) Experimental investigation into the effect of low plasticity burnishing parameters on the surface integrity of TA2. Int J Adv Manuf Technol 88:1089–1099. doi:10.1007/s00170-016-8838-3

    Article  Google Scholar 

  12. Aviles R, Albizuri J, Rodriguez A, Lopez de Lacalle LN (2013) Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel. Int J Fatigue 55:230–244. doi:10.1016/j.ijfatigue.2013.06.024

    Article  Google Scholar 

  13. Low KO, Wong KJ (2011) Influence of ball burnishing on surface quality and tribological characteristics of polymers under dry sliding conditions. Tribol Int 44:144–153. doi:10.1016/j.triboint.2010.10.005

    Article  Google Scholar 

  14. Fu CH, Guo YB, McKinney J, Wei XT (2012) Process mechanics of low plasticity burnishing of nitinol alloy. J Mater Eng Perform 21:2607–2617. doi:10.1007/s11665-012-0313-1

    Article  Google Scholar 

  15. Rodriguez A, Lopez de Lacalle LN, Celaya A, Lamikiz A, Albizuri J (2012) Surface improvement of shafts by the deep ball-burnishing technique. Surf Coat Technol 206:2817–2824. doi:10.1016/j.surfcoat.2011.11.045

    Article  Google Scholar 

  16. Sequera A, Fu CH, Guo YB, Wei XT (2014) Surface integrity of Inconel 718 by ball burnishing. J Mater Eng Perform 23:3347–3353. doi:10.1007/s11665-014-1093-6

    Article  Google Scholar 

  17. Zhang T, Bugtai N, Marinescu ID (2015) Burnishing of aerospace alloy: a theoretical–experimental approach. J Manuf Syst 37:472–478. doi:10.1016/j.jmsy.2014.11.004

    Article  Google Scholar 

  18. Gomez-Gras G, Travieso-Rodriguez JA, Gonzalez-Rojas HA, Napoles-Alberro A, Carrillo FJ, Dessein G (2015) Study of a ball-burnishing vibration-assisted process. Proc Inst Mech Eng Part B - J Eng Manuf 229:172–177. doi:10.1177/0954405414526383

    Article  Google Scholar 

  19. Travieso-Rodriguez JA, Gomez-Gras G, Dessein G, Carrillo F, Alexis J, Jorba-Peiro J, Aubazac N (2015) Effects of a ball-burnishing process assisted by vibrations in G10380 steel specimens. Int J Adv Manuf Technol 81:1757–1765. doi:10.1007/s00170-015-7255-3

    Article  Google Scholar 

  20. Gomez-Gras G, Travieso-Rodriguez JA, Jerez-Mesa R, Lluma-Fuentes J, dela Gomis CB (2016) Experimental study of lateral pass width in conventional and vibrations-assisted ball burnishing. Int J Adv Manuf Technol doi. doi:10.1007/s00170-016-8490-y

    Google Scholar 

  21. Tadic B, Todorovic PM, Luzanin O, Miljanic D, Jeremic BM, Bogdanovic B, Vukelic D (2013) Using specially designed high-stiffness burnishing tool to achieve high quality surface finish. Int J Adv Manuf Technol 67:601–611. doi:10.1007/s00170-012-4508-2

    Article  Google Scholar 

  22. Randjelovic S, Tadic B, Todorovic PM, Vukelic D, Miloradovic D, Radenkovic M, Tsiafis C (2015) Modelling of the ball burnishing process with a high-stiffness tool. Int J Adv Manuf Technol 81:1509–1518. doi:10.1007/s00170-015-7319-4

    Article  Google Scholar 

  23. Babic M, Kocovic V, Vukelic D, Mihajlovic G, Eric M, Tadic B (2017) Investigation of ball burnishing processing on mechanical characteristics of wooden elements. Proc Inst Mech Eng Part C - J Mech Eng Sci 231:120–127. doi:10.1177/0954406216641711

    Article  Google Scholar 

  24. Tadic B, Randjelovic S, Todorovic P, Zivkovic J, Kocovic V, Budak I, Vukelic D (2016) Using a high-stiffness burnishing tool for increased dimensional and geometrical accuracies of openings. Precis Eng 43:335–344. doi:10.1016/j.precisioneng.2015.08.014

    Article  Google Scholar 

  25. Korhonen H, Laakkonen J, Hakala J, Lappalainen R (2013) Improvements in the surface characteristics of stainless steel workpieces by burnishing with an amorphous diamond-coated tip. Mach Sci Technol 17:593–610. doi:10.1080/10910344.2013.837351

    Article  Google Scholar 

  26. Grzesik W, Zak K (2014) Characterization of surface integrity produced by sequential dry hard turning and ball burnishing operations. J Manuf Sci Eng 136:031017. doi:10.1115/1.4026936

    Article  Google Scholar 

  27. Gharbi F, Sghaier S, Morel F, Benameur T (2015) Experimental investigation of the effect of burnishing force on service properties of AISI 1010 steel plates. J Mater Eng Perform 24:721–725. doi:10.1007/s11665-014-1349-1

    Article  Google Scholar 

  28. Salahshoor M, Guo YB (2011) Surface integrity of biodegradable magnesium-calcium orthopedic implant by burnishing. J Mech Behav Biomed Mater 4:1888–1904. doi:10.1016/j.jmbbm.2011.06.006

    Article  Google Scholar 

  29. Amdouni H, Bouzaiene H, Montagne A, Nasri M, Iost A (2017) Modeling and optimization of a ball-burnished aluminum alloy flat surface with a crossed strategy based on response surface methodology. Int J Adv Manuf Technol 88:801–814. doi:10.1007/s00170-016-8817-8

    Article  Google Scholar 

  30. Amdouni H, Bouzaiene H, Montagne A, Van Gorp A, Coorevits T, Nasri M, Iost A (2016) Experimental study of a six new ball-burnishing strategies effects on the Al-alloy flat surfaces integrity enhancement. Int J Adv Manuf Technol. doi:10.1007/s00170-016-9529-9

    Google Scholar 

  31. Salahshoor M, Guo YB (2013) Process mechanics in ball burnishing biomedical magnesium–calcium alloy. Int J Adv Manuf Technol 64:133–144. doi:10.1007/s00170-012-4024-4

    Article  Google Scholar 

  32. Jinlong L, Hongyun L (2013) Effect of surface burnishing on texture and corrosion behavior of 2024 aluminum alloy. Surf Coat Technol 235:513–520. doi:10.1016/j.surfcoat.2013.07.071

    Article  Google Scholar 

  33. Janczewski L, Tobola D, Brostow W, Czechowski K, Hagg Lobland HE, Kot M, Zagorski K (2016) Effects of ball burnishing on surface properties of low density polyethylene. Tribol Int 93:36–42. doi:10.1016/j.triboint.2015.09.006

    Article  Google Scholar 

  34. Li FL, Xia W, Zhou ZY, Zhao J, Tang ZQ (2012) Analytical prediction and experimental verification of surface roughness during the burnishing process. Int J Mach Tools Manuf 62:67–75. doi:10.1016/j.ijmachtools.2012.06.001

    Article  Google Scholar 

  35. Bouzid W, Tsoumarev O, Sai K (2004) An investigation of surface roughness of burnished AISI 1042 steel. Int J Adv Manuf Technol 24:120–125. doi:10.1007/s00170-003-1761-4

    Google Scholar 

  36. Gharbi F, Sghaier S, Hamdi H, Benameur T (2012) Ductility improvement of aluminum 1050A rolled sheet by a newly designed ball burnishing tool device. Int J Adv Manuf Technol 60:87–99. doi:10.1007/s00170-011-3598-6

    Article  Google Scholar 

  37. Bougharriou A, Bouzid W, Sai K (2014) Analytical modeling of surface profile in turning and burnishing. Int J Adv Manuf Technol 75:547–558. doi:10.1007/s00170-014-6168-x

    Article  Google Scholar 

  38. Hiegemann L, Weddeling C, Khalifa NB, Tekkaya AE (2015) Prediction of roughness after ball burnishing of thermally coated surfaces. J Mater Process Technol 217:193–201. doi:10.1016/j.jmatprotec.2014.11.008

    Article  Google Scholar 

  39. Esme U, Sagbas A, Kahraman FM, Kulekci MK (2008) Use of artificial neural networks in ball burnishing process for the prediction of surface roughness of AA 7075 aluminum alloy. Mater Tehnol 42:215–219

    Google Scholar 

  40. Sarhan AAD, El-Tayeb NSM (2014) Investigating the surface quality of the burnished brass C3605 - fuzzy rule-based approach. Int J Adv Manuf Technol 71:1143–1150. doi:10.1007/s00170-013-5543-3

    Article  Google Scholar 

  41. Esme U, Kulekci MK, Ustun D, Kahraman F, Kazancoglu Y (2015) Grey-based fuzzy algorithm for the optimization of the ball burnishing process. Mater Test 57:666–673

    Article  Google Scholar 

  42. Stalin John MR, Vinayagam BK (2014) Optimization of nonlinear characteristics of ball burnishing process using sugeno fuzzy neural system. J Braz Soc Mech Sci Eng 36:101–109. doi:10.1007/s40430-013-0060-8

    Article  Google Scholar 

  43. Mohammadi F, Sedaghati R, Bonakdar A (2013) Finite element analysis and design optimization of low plasticity burnishing process. Int J Adv Manuf Technol 70:1337–1354. doi:10.1007/s00170-013-5406-y

    Article  Google Scholar 

  44. Sayahi M, Sghaier S, Belhadjsalah H (2013) Finite element analysis of ball burnishing process: comparisons between numerical results and experiments. Int J Adv Manuf Technol 67:1665–1673. doi:10.1007/s00170-012-4599-9

    Article  Google Scholar 

  45. Balland P, Tabourot L, Degre F, Moreau V (2013) Mechanics of the burnishing process. Precis Eng 37:129–134. doi:10.1016/j.precisioneng.2012.07.008

    Article  Google Scholar 

  46. Stalin John MR, Vinayagam BK (2011) Optimization of ball burnishing process on tool steel (T215Cr12) in CNC machining Centre using response surface methodology. Arab J Sci Eng 36:1407–1422. doi:10.1007/s13369-011-0126-9

    Article  Google Scholar 

  47. Kahraman F (2015) Application of the response surface methodology in the ball burnishing process for the prediction and analysis of surface hardness of the aluminum alloy AA 7075. Mater Test 57:311–315. doi:10.3139/120.110721

    Article  Google Scholar 

  48. Gharbi F, Sghaier S, Al-Fadhalah KJ, Benameur T (2011) Effect of ball burnishing process on the surface quality and microstructure properties of AISI 1010 steel plates. J Mater Eng Perform 20:903–910. doi:10.1007/s11665-010-9701-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djordje Vukelic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vukelic, D., Tadic, B., Dzunic, D. et al. Analysis of ball-burnishing impact on barrier properties of wood workpieces. Int J Adv Manuf Technol 92, 129–138 (2017). https://doi.org/10.1007/s00170-017-0134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0134-3

Keywords

Navigation