Advertisement

Journal of High Energy Physics

, 2015:157 | Cite as

Einstein-Born-Infeld-massive gravity: adS-black hole solutions and their thermodynamical properties

  • S.H. Hendi
  • B. Eslam Panah
  • S. Panahiyan
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, we study massive gravity in the presence of Born-Infeld nonlinear electrodynamics. First, we obtain metric function related to this gravity and investigate the geometry of the solutions and find that there is an essential singularity at the origin (r = 0). It will be shown that due to contribution of the massive part, the number, type and place of horizons may be changed. Next, we calculate the conserved and thermodynamic quantities and check the validation of the first law of thermodynamics. We also investigate thermal stability of these black holes in context of canonical ensemble. It will be shown that number, type and place of phase transition points are functions of different parameters which lead to dependency of stability conditions to these parameters. Also, it will be shown how the behavior of temperature is modified due to extension of massive gravity and strong nonlinearity parameter. Next, critical behavior of the system in extended phase space by considering cosmological constant as pressure is investigated. A study regarding neutral Einstein-massive gravity in context of extended phase space is done. Geometrical approach is employed to study the thermodynamical behavior of the system in context of heat capacity and extended phase space. It will be shown that GTs, heat capacity and extended phase space have consistent results. Finally, critical behavior of the system is investigated through use of another method. It will be pointed out that the results of this method is in agreement with other methods and follow the concepts of ordinary thermodynamics.

Keywords

Black Holes Classical Theories of Gravity Spacetime Singularities 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Deser, R. Jackiw and G. ’t Hooft, Three-Dimensional Einstein Gravity: Dynamics of Flat Space, Annals Phys. 152 (1984) 220 [INSPIRE].
  2. [2]
    M. Fierz, Force-free particles with any spin, Helv. Phys. Acta 12 (1939) 3 [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  5. [5]
    S.F. Hassan and R.A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free Massive Gravity with a General Reference Metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    M. Park, Quantum Aspects of Massive Gravity, Class. Quant. Grav. 28 (2011) 105012 [arXiv:1009.4369] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    Y.-F. Cai, D.A. Easson, C. Gao and E.N. Saridakis, Charged black holes in nonlinear massive gravity, Phys. Rev. D 87 (2013) 064001 [arXiv:1211.0563] [INSPIRE].ADSGoogle Scholar
  12. [12]
    E. Babichev and A. Fabbri, A class of charged black hole solutions in massive (bi)gravity, JHEP 07 (2014) 016 [arXiv:1405.0581] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    E. Babichev, C. Deffayet and R. Ziour, Recovering General Relativity from massive gravity, Phys. Rev. Lett. 103 (2009) 201102 [arXiv:0907.4103] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    L. Alberte, A.H. Chamseddine and V. Mukhanov, Massive Gravity: Resolving the Puzzles, JHEP 12 (2010) 023 [arXiv:1008.5132] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    K. Koyama, G. Niz and G. Tasinato, Analytic solutions in non-linear massive gravity, Phys. Rev. Lett. 107 (2011) 131101 [arXiv:1103.4708] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    T.M. Nieuwenhuizen, Exact Schwarzschild-de Sitter black holes in a family of massive gravity models, Phys. Rev. D 84 (2011) 024038 [arXiv:1103.5912] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M.S. Volkov, Self-accelerating cosmologies and hairy black holes in ghost-free bigravity and massive gravity, Class. Quant. Grav. 30 (2013) 184009 [arXiv:1304.0238] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    E. Babichev and C. Deffayet, An introduction to the Vainshtein mechanism, Class. Quant. Grav. 30 (2013) 184001 [arXiv:1304.7240] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
  20. [20]
    S.F. Hassan and R.A. Rosen, On Non-Linear Actions for Massive Gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev. B 89 (2014) 245116 [arXiv:1311.2451] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J. C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and Holographic Massive Gravity, Phys. Rev. Lett. 114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    M. Baggioli and D.K. Brattan, Drag Phenomena from Holographic Massive Gravity, arXiv:1504.07635 [INSPIRE].
  28. [28]
    R.-G. Cai, Y.-P. Hu, Q.-Y. Pan and Y.-L. Zhang, Thermodynamics of Black Holes in Massive Gravity, Phys. Rev. D 91 (2015) 024032 [arXiv:1409.2369] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Xu, L.-M. Cao and Y.-P. Hu, P-V criticality in the extended phase space of black holes in massive gravity, Phys. Rev. D 91 (2015) 124033 [arXiv:1506.03578] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S.H. Hendi, S. Panahiyan, B.E. Panah and M. Momennia, Geometrical thermodynamics of phase transition: charged black holes in massive gravity, arXiv:1506.07262 [INSPIRE].
  31. [31]
    S.H. Hendi, S. Panahiyan and B.E. Panah, Charged Black Hole Solutions in Gauss-Bonnet-Massive Gravity, arXiv:1507.06563 [INSPIRE].
  32. [32]
    M. Born and L. Infeld, Foundations of the New Field Theory, Proc. Roy. Soc. Lond. 144 (1934) 425.CrossRefADSGoogle Scholar
  33. [33]
    B. Hoffmann, Gravitational and Electromagnetic Mass in the Born-Infeld Electrodynamics, Phys. Rev. 47 (1935) 877 [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    M. Demianski, Static electromagnetic geon, Found. Phys. 16 (1986) 187 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    H.P. de Oliveira, Nonlinear charged black holes, Class. Quant. Grav. 11 (1994) 1469 [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    S. Fernando and D. Krug, Charged black hole solutions in Einstein-Born-Infeld gravity with a cosmological constant, Gen. Rel. Grav. 35 (2003) 129 [hep-th/0306120] [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  37. [37]
    R.-G. Cai, D.-W. Pang and A. Wang, Born-Infeld black holes in (A)dS spaces, Phys. Rev. D 70 (2004) 124034 [hep-th/0410158] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    D.J. Cirilo Lombardo, Rotating charged black holes in Einstein-Born-Infeld theories and their ADM mass, Gen. Rel. Grav. 37 (2005) 847 [gr-qc/0603066] [INSPIRE].zbMATHMathSciNetCrossRefGoogle Scholar
  39. [39]
    T.K. Dey, Born-Infeld black holes in the presence of a cosmological constant, Phys. Lett. B 595 (2004) 484 [hep-th/0406169] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M.H. Dehghani and H.R. Rastegar Sedehi, Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity, Phys. Rev. D 74 (2006) 124018 [hep-th/0610239] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    S.H. Hendi, Rotating Black Branes in Brans-Dicke-Born-Infeld Theory, J. Math. Phys. 49 (2008) 082501 [arXiv:0808.2347] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  42. [42]
    Y.S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics of Einstein-Born-Infeld black holes in three dimensions, Phys. Rev. D 78 (2008) 044020 [arXiv:0804.0301] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    O. Mišković and R. Olea, Thermodynamics of Einstein-Born-Infeld black holes with negative cosmological constant, Phys. Rev. D 77 (2008) 124048 [arXiv:0802.2081] [INSPIRE].ADSGoogle Scholar
  44. [44]
    S.H. Hendi, Rotating Black String with Nonlinear Source, Phys. Rev. D 82 (2010) 064040 [arXiv:1008.5210] [INSPIRE].ADSGoogle Scholar
  45. [45]
    H.S. Ramadhan, B.A. Cahyo and M. Iqbal, Flux compactifications in Einstein-Born-Infeld theories, Phys. Rev. D 92 (2015) 024021 [arXiv:1507.03728] [INSPIRE].ADSGoogle Scholar
  46. [46]
    F. Atamurotov, S.G. Ghosh and B. Ahmedov, Horizon structure of rotating Einstein-Born-Infeld black holes and shadow, arXiv:1506.03690 [INSPIRE].
  47. [47]
    S.H. Hendi, Asymptotic charged BTZ black hole solutions, JHEP 03 (2012) 065 [arXiv:1405.4941] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  48. [48]
    S.H. Hendi, Asymptotic Reissner-Nordström black holes, Annals Phys. 333 (2013) 282 [arXiv:1405.5359] [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  49. [49]
    E.S. Fradkin and A.A. Tseytlin, Nonlinear Electrodynamics from Quantized Strings, Phys. Lett. B 163 (1985) 123 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  50. [50]
    D.L. Wiltshire, Black Holes in String Generated Gravity Models, Phys. Rev. D 38 (1988) 2445 [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    R.G. Leigh, Dirac-Born-Infeld Action from Dirichlet σ-model, Mod. Phys. Lett. A 4 (1989) 2767 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  52. [52]
    M. Cataldo and A. Garcia, Three dimensional black hole coupled to the Born-Infeld electrodynamics, Phys. Lett. B 456 (1999) 28 [hep-th/9903257] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  53. [53]
    G.W. Gibbons and C.A.R. Herdeiro, The Melvin universe in Born-Infeld theory and other theories of nonlinear electrodynamics, Class. Quant. Grav. 18 (2001) 1677 [hep-th/0101229] [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  54. [54]
    G.W. Gibbons, Aspects of Born-Infeld theory and string/M theory, Rev. Mex. Fis. 49S1 (2003) 19 [hep-th/0106059] [INSPIRE].Google Scholar
  55. [55]
    M. Bañados, P.G. Ferreira and C. Skordis, Eddington-Born-Infeld gravity and the large scale structure of the Universe, Phys. Rev. D 79 (2009) 063511 [arXiv:0811.1272] [INSPIRE].ADSGoogle Scholar
  56. [56]
    G.J. Olmo, D. Rubiera-Garcia and H. Sanchis-Alepuz, Geonic black holes and remnants in Eddington-inspired Born-Infeld gravity, Eur. Phys. J. C 74 (2014) 2804 [arXiv:1311.0815] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    H. Sotani and U. Miyamoto, Properties of an electrically charged black hole in Eddington-inspired Born-Infeld gravity, Phys. Rev. D 90 (2014) 124087 [arXiv:1412.4173] [INSPIRE].ADSGoogle Scholar
  58. [58]
    S.-W. Wei, K. Yang and Y.-X. Liu, Black hole solution and strong gravitational lensing in Eddington-inspired Born-Infeld gravity, Eur. Phys. J. C 75 (2015) 253 [Erratum ibid. C 75 (2015) 331] [arXiv:1405.2178] [INSPIRE].
  59. [59]
    R. Shaikh, Lorentzian wormholes in Eddington-inspired Born-Infeld gravity, Phys. Rev. D 92 (2015) 024015 [arXiv:1505.01314] [INSPIRE].ADSGoogle Scholar
  60. [60]
    N.S. Santos and J. Santos, The virial theorem in Eddington-Born-Infeld gravity, arXiv:1506.04569 [INSPIRE].
  61. [61]
    I. Cho and J.-O. Gong, Spectral indices in Eddington-inspired Born-Infeld inflation, Phys. Rev. D 92 (2015) 064046 [arXiv:1506.07061] [INSPIRE].ADSGoogle Scholar
  62. [62]
    I. Güllü, T.C. Sisman and B. Tekin, Born-Infeld Gravity with a Massless Graviton in Four Dimensions, Phys. Rev. D 91 (2015) 044007 [arXiv:1410.8033] [INSPIRE].ADSGoogle Scholar
  63. [63]
    S. Jana and S. Kar, Born-Infeld gravity coupled to Born-Infeld electrodynamics, Phys. Rev. D 92 (2015) 084004 [arXiv:1504.05842] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S. Ferrara and A. Sagnotti, Massive Born-Infeld and Other Dual Pairs, JHEP 04 (2015) 032 [arXiv:1502.01650] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  65. [65]
    L. Andrianopoli, R. D’Auria and M. Trigiante, On the dualization of Born-Infeld theories, Phys. Lett. B 744 (2015) 225 [arXiv:1412.6786] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  66. [66]
    R. Bufalo, Born-Infeld electrodynamics in very special relativity, Phys. Lett. B 746 (2015) 251 [arXiv:1505.02483] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  67. [67]
    E.L.B. Junior, M.E. Rodrigues and M.J.S. Houndjo, Born-Infeld and Charged Black Holes with non-linear source in f (T ) Gravity, JCAP 06 (2015) 037 [arXiv:1503.07427] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  68. [68]
    S. Ferrara and A. Sagnotti, Some Pathways in non-Linear Supersymmetry: Special Geometry Born-Infelds, Cosmology and dualities, arXiv:1506.05730 [INSPIRE].
  69. [69]
    Y.S. Myung, Thermodynamics of the Schwarzschild-de Sitter black hole: Thermal stability of the Nariai black hole, Phys. Rev. D 77 (2008) 104007 [arXiv:0712.3315] [INSPIRE].MathSciNetADSGoogle Scholar
  70. [70]
    B.M.N. Carter and I.P. Neupane, Thermodynamics and stability of higher dimensional rotating (Kerr) AdS black holes, Phys. Rev. D 72 (2005) 043534 [gr-qc/0506103] [INSPIRE].MathSciNetADSGoogle Scholar
  71. [71]
    D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  72. [72]
    F. Capela and G. Nardini, Hairy Black Holes in Massive Gravity: Thermodynamics and Phase Structure, Phys. Rev. D 86 (2012) 024030 [arXiv:1203.4222] [INSPIRE].ADSGoogle Scholar
  73. [73]
    D. Grumiller, R. McNees and J. Salzer, Cosmological constant as confining U(1) charge in two-dimensional dilaton gravity, Phys. Rev. D 90 (2014) 044032 [arXiv:1406.7007] [INSPIRE].ADSGoogle Scholar
  74. [74]
    S.H. Hendi, S. Panahiyan and R. Mamasani, Thermodynamic stability of charged BTZ black holes: Ensemble dependency problem and its solution, Gen. Rel. Grav. 47 (2015) 91 [arXiv:1507.08496] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  75. [75]
    J.D.E. Creighton and R.B. Mann, Quasilocal thermodynamics of dilaton gravity coupled to gauge fields, Phys. Rev. D 52 (1995) 4569 [gr-qc/9505007] [INSPIRE].MathSciNetADSGoogle Scholar
  76. [76]
    G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [INSPIRE].CrossRefADSGoogle Scholar
  77. [77]
    B.P. Dolan, The cosmological constant and the black hole equation of state, Class. Quant. Grav. 28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  78. [78]
    B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics, Class. Quant. Grav. 28 (2011) 235017 [arXiv:1106.6260] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  79. [79]
    D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  80. [80]
    M.B.J. Poshteh, B. Mirza and Z. Sherkatghanad, Phase transition, critical behavior and critical exponents of Myers-Perry black holes, Phys. Rev. D 88 (2013) 024005 [arXiv:1306.4516] [INSPIRE].ADSGoogle Scholar
  81. [81]
    S. Chen, X. Liu and C. Liu, PV Criticality of an AdS Black Hole in f (R) Gravity, Chin. Phys. Lett. 30 (2013) 060401.CrossRefADSGoogle Scholar
  82. [82]
    S.H. Hendi and M.H. Vahidinia, Extended phase space thermodynamics and P-V criticality of black holes with a nonlinear source, Phys. Rev. D 88 (2013) 084045 [arXiv:1212.6128] [INSPIRE].ADSGoogle Scholar
  83. [83]
    J.-X. Mo and W.-B. Liu, PV criticality of topological black holes in Lovelock-Born-Infeld gravity, Eur. Phys. J. C 74 (2014) 2836 [arXiv:1401.0785] [INSPIRE].CrossRefADSGoogle Scholar
  84. [84]
    D.-C. Zou, S.-J. Zhang and B. Wang, Critical behavior of Born-Infeld AdS black holes in the extended phase space thermodynamics, Phys. Rev. D 89 (2014) 044002 [arXiv:1311.7299] [INSPIRE].ADSGoogle Scholar
  85. [85]
    W. Xu and L. Zhao, Critical phenomena of static charged AdS black holes in conformal gravity, Phys. Lett. B 736 (2014) 214 [arXiv:1405.7665] [INSPIRE].CrossRefADSGoogle Scholar
  86. [86]
    J. Xu, L.-M. Cao and Y.-P. Hu, P-V criticality in the extended phase space of black holes in massive gravity, Phys. Rev. D 91 (2015) 124033 [arXiv:1506.03578] [INSPIRE].ADSGoogle Scholar
  87. [87]
    S.H. Hendi, S. Panahiyan and M. Momennia, Extended phase space of AdS Black Holes in Einstein-Gauss-Bonnet gravity with a quadratic nonlinear electrodynamics, arXiv:1503.03340 [INSPIRE].
  88. [88]
    E. Caceres, P.H. Nguyen and J.F. Pedraza, Holographic entanglement entropy and the extended phase structure of STU black holes, JHEP 09 (2015) 184 [arXiv:1507.06069] [INSPIRE].CrossRefADSGoogle Scholar
  89. [89]
    J.D.E. Creighton and R.B. Mann, Quasilocal thermodynamics of dilaton gravity coupled to gauge fields, Phys. Rev. D 52 (1995) 4569 [gr-qc/9505007] [INSPIRE].MathSciNetADSGoogle Scholar
  90. [90]
    G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [INSPIRE].CrossRefADSGoogle Scholar
  91. [91]
    B.P. Dolan, The cosmological constant and the black hole equation of state, Class. Quant. Grav. 28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  92. [92]
    B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics, Class. Quant. Grav. 28 (2011) 235017 [arXiv:1106.6260] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  93. [93]
    F. Weinhold, Metric geometry of equilibrium thermodynamics, J. Chem. Phys. 63 (1975) 2479.MathSciNetCrossRefADSGoogle Scholar
  94. [94]
    F. Weinhold, Metric geometry of equilibrium thermodynamics. II. Scaling, homogeneity, and generalized Gibbs-Duhem relations, J. Chem. Phys. 63 (1975) 2484.MathSciNetCrossRefADSGoogle Scholar
  95. [95]
    H. Quevedo, Geometrothermodynamics, J. Math. Phys. 48 (2007) 013506 [physics/0604164] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  96. [96]
    H. Quevedo and A. Sanchez, Geometrothermodynamics of asymptotically de Sitter black holes, JHEP 09 (2008) 034 [arXiv:0805.3003] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  97. [97]
    H. Quevedo, Geometrothermodynamics of black holes, Gen. Rel. Grav. 40 (2008) 971 [arXiv:0704.3102] [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  98. [98]
    S.H. Hendi, S. Panahiyan, B.E. Panah and M. Momennia, A new approach toward geometrical concept of black hole thermodynamics, Eur. Phys. J. C 75 (2015) 507 [arXiv:1506.08092] [INSPIRE].CrossRefADSGoogle Scholar
  99. [99]
    S.H. Hendi, S. Panahiyan and B.E. Panah, Geometrical Method for Thermal Instability of Nonlinearly Charged BTZ Black Holes, Adv. High Energy Phys. 2015 (2015) 743086 [INSPIRE].CrossRefGoogle Scholar
  100. [100]
    G. Ruppeiner, Thermodynamics: A Riemannian geometric model, Phys. Rev. A 20 (1979) 1608.CrossRefADSGoogle Scholar
  101. [101]
    G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67 (1995) 605 [Erratum ibid. 68 (1996) 313] [INSPIRE].
  102. [102]
    S.H. Hendi, S. Panahiyan and B.E. Panah, PV criticality and geometrothermodynamics of black holes with Born-Infeld type nonlinear electrodynamics, Int. J. Mod. Phys. D 25 (2016) 1650010 [arXiv:1410.0352] [INSPIRE].Google Scholar
  103. [103]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].MathSciNetADSGoogle Scholar
  104. [104]
    S.W. Hawking and C.J. Hunter, Gravitational entropy and global structure, Phys. Rev. D 59 (1999) 044025 [hep-th/9808085] [INSPIRE].MathSciNetADSGoogle Scholar
  105. [105]
    C.J. Hunter, The Action of instantons with nut charge, Phys. Rev. D 59 (1999) 024009 [gr-qc/9807010] [INSPIRE].ADSGoogle Scholar
  106. [106]
    S.W. Hawking, C.J. Hunter and D.N. Page, Nut charge, anti-de Sitter space and entropy, Phys. Rev. D 59 (1999) 044033 [hep-th/9809035] [INSPIRE].MathSciNetADSGoogle Scholar
  107. [107]
    R.-G. Cai, L.-M. Cao, L. Li and R.-Q. Yang, P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space, JHEP 09 (2013) 005 [arXiv:1306.6233] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Physics Department and Biruni Observatory, College of SciencesShiraz UniversityShirazIran
  2. 2.Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)MaraghaIran

Personalised recommendations