Skip to main content
Log in

P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the PV criticality and phase transition in the extended phase space of charged Gauss-Bonnet black holes in anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. The black holes can have a Ricci flat (k = 0), spherical (k = 1), or hyperbolic (k = −1) horizon. We find that for the Ricci flat and hyperbolic Gauss-Bonnet black holes, no PV criticality and phase transition appear, while for the black holes with a spherical horizon, even when the charge of the black hole is absent, the PV criticality and the small black hole/large black hole phase transition will appear, but it happens only in d = 5 dimensions; when the charge does not vanish, the PV criticality and the small black hole/large phase transition always appear in d = 5 dimensions; in the case of d ≥ 6, to have the PV criticality and the small black hole/large black hole phase transition, there exists an upper bound for the parameter \( b=\widetilde{\alpha }{{\left| Q \right|}^{{{-2 \left/ {{\left( {d-3} \right)}} \right.}}}} \), where \( \widetilde{\alpha } \) is the Gauss-Bonnet coefficient and Q is the charge of the black hole. We calculate the critical exponents at the critical point and find that for all cases, they are the same as those in the van der Waals liquid-gas system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. S. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. J.-y. Shen, R.-G. Cai, B. Wang and R.-K. Su, Thermodynamic geometry and critical behavior of black holes, Int. J. Mod. Phys. A 22 (2007) 11 [gr-qc/0512035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Gunasekaran, R.B. Mann and D. Kubiznak, Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization, JHEP 11 (2012) 110 [arXiv:1208.6251] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S.-W. Wei and Y.-X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes, Phys. Rev. D 87 (2013), no. 4 044014 [arXiv:1209.1707] [INSPIRE].

  11. A. Belhaj, M. Chabab, H. El Moumni and M. Sedra, On Thermodynamics of AdS Black Holes in Arbitrary Dimensions, Chin. Phys. Lett. 29 (2012) 100401 [arXiv:1210.4617] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S. Hendi and M. Vahidinia, P-V criticality of higher dimensional black holes with nonlinear source, arXiv:1212.6128 [INSPIRE].

  13. S. Chen, X. Liu, C. Liu and J. Jing, PV criticality of AdS black hole in f(R) gravity, Chin. Phys. Lett. 30 (6) , 060401 (2013) [arXiv:1301.3234] [INSPIRE].

  14. E. Spallucci and A. Smailagic, Maxwells equal area law for charged Anti-deSitter black holes, Phys. Lett. B 723 (2013) 436 [arXiv:1305.3379] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  15. R. Zhao, H.-H. Zhao, M.-S. Ma and L.-C. Zhang, On the critical phenomena and thermodynamics of charged topological dilaton AdS black holes, arXiv:1305.3725 [INSPIRE].

  16. A. Belhaj, M. Chabab, H.E. Moumni and M. Sedra, Critical Behaviors of 3D Black Holes with a Scalar Hair, arXiv:1306.2518 [INSPIRE].

  17. N. Altamirano, D. Kubiznak and R.B. Mann, Reentrant Phase Transitions in Rotating AdS Black Holes, arXiv:1306.5756 [INSPIRE].

  18. G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J.D. Creighton and R.B. Mann, Quasilocal thermodynamics of dilaton gravity coupled to gauge fields, Phys. Rev. D 52 (1995) 4569 [gr-qc/9505007] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. D. Rasheed, Nonlinear electrodynamics: Zeroth and first laws of black hole mechanics, hep-th/9702087 [INSPIRE].

  21. N. Breton, Smarrs formula for black holes with non-linear electrodynamics, Gen. Rel. Grav. 37 (2005) 643 [gr-qc/0405116] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics, Class. Quant. Grav. 28 (2011) 235017 [arXiv:1106.6260] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Cvetic, G. Gibbons, D. Kubiznak and C. Pope, Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev. D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].

    ADS  Google Scholar 

  25. B.P. Dolan, D. Kastor, D. Kubiznak, R.B. Mann and J. Traschen, Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes, Phys. Rev. D 87 (2013) 104017 [arXiv:1301.5926] [INSPIRE].

    ADS  Google Scholar 

  26. A. Castro, N. Dehmami, G. Giribet and D. Kastor, On the Universality of Inner Black Hole Mechanics and Higher Curvature Gravity, arXiv:1304.1696 [INSPIRE].

  27. B.M. El-Menoufi, B. Ett, D. Kastor and J. Traschen, Gravitational Tension and Thermodynamics of Planar AdS Spacetimes, Class. Quant. Grav. 30 (2013) 155003 [arXiv:1302.6980] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. B.P. Dolan, The cosmological constant and the black hole equation of state, Class. Quant. Grav. 28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. B.P. Dolan, Compressibility of rotating black holes, Phys. Rev. D 84 (2011) 127503 [arXiv:1109.0198] [INSPIRE].

    ADS  Google Scholar 

  30. J. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B 353 (1995) 46 [gr-qc/9404041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. J.P. Lemos and V.T. Zanchin, Rotating charged black string and three-dimensional black holes, Phys. Rev. D 54 (1996) 3840 [hep-th/9511188] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. D.R. Brill, J. Louko and P. Peldan, Thermodynamics of (3+1)-dimensional black holes with toroidal or higher genus horizons, Phys. Rev. D 56 (1997) 3600 [gr-qc/9705012] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. L. Vanzo, Black holes with unusual topology, Phys. Rev. D 56 (1997) 6475 [gr-qc/9705004] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. D. Birmingham, Topological black holes in Anti-de Sitter space, Class. Quant. Grav. 16 (1999) 1197 [hep-th/9808032] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].

    Article  ADS  Google Scholar 

  37. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].

    ADS  Google Scholar 

  38. D. Wiltshire, Spherically symmetric solutions of Einstein-Maxwell theory with a Gauss-Bonnet term, Phys. Lett. B 169 (1986) 36 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Cvetic, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. T. Clunan, S.F. Ross and D.J. Smith, On Gauss-Bonnet black hole entropy, Class. Quant. Grav. 21 (2004) 3447 [gr-qc/0402044] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. R.E. Reichl, A Modern Course in Statistical Physics, University of Texas Press, Austin TX, U.S.A. (1980).

    Google Scholar 

  42. D. Kastor, S. Ray and J. Traschen, Smarr Formula and an Extended First Law for Lovelock Gravity, Class. Quant. Grav. 27 (2010) 235014 [arXiv:1005.5053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Qiu Yang.

Additional information

ArXiv ePrint: gr-qc/1306.6233v3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, RG., Cao, LM., Li, L. et al. P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space. J. High Energ. Phys. 2013, 5 (2013). https://doi.org/10.1007/JHEP09(2013)005

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)005

Keywords

Navigation