Skip to main content
Log in

Asymptotic charged BTZ black hole solutions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The well-known (2 + 1)-dimensional Reissner-Nordström (BTZ) black hole can be generalized to three dimensional Einstein-nonlinear electromagnetic field, motivated from obtaining a finite value for the self-energy of a pointlike charge. Considering three types of nonlinear electromagnetic fields coupled with Einstein gravity, we derive three kinds of black hole solutions which their asymptotic properties are the same as charged BTZ solution. In addition, we calculate conserved and thermodynamic quantities of the solutions and show that they satisfy the first law of thermodynamics. Finally, we perform a stability analysis in the canonical ensemble and show that the black holes are stable in the whole phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.S. Fradkin and A.A. Tseytlin, Nonlinear electrodynamics from quantized strings, Phys. Lett. B 163 (1985) 123 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. E. Bergshoeff, E. Sezgin, C.N. Pope and P.K. Townsend, The Born-Infeld action from conformal invariance of the open superstring, Phys. Lett. B 188 (1987) 70 [INSPIRE].

    ADS  Google Scholar 

  3. R.R. Metsaev, M.A. Rakhmanov and A.A. Tseytlin, The Born-Infeld action as the effective action in the open superstring theory, Phys. Lett. B 193 (1987) 207 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. A.A. Tseytlin, On nonAbelian generalization of Born-Infeld action in string theory, Nucl. Phys. B 501 (1997) 41 [hep-th/9701125] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Brecher and M.J. Perry, Bound states of D-branes and the nonAbelian Born-Infeld action, Nucl. Phys. B 527 (1998) 121 [hep-th/9801127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Born and L. Infeld, Quantum theory of the electromagnetic field, Proc. Roy. Soc. Lond. A 143 (1934) 410 [INSPIRE].

    ADS  Google Scholar 

  7. M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934)425 [INSPIRE].

    ADS  Google Scholar 

  8. R.G. Leigh, Dirac-Born-Infeld action from Dirichlet σ-model, Mod. Phys. Lett. A 4 (1989) 2767 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. B. Hoffmann, Gravitational and electromagnetic mass in the Born-Infeld electrodynamics, Phys. Rev. 47 (1935) 877 [INSPIRE].

    Article  ADS  Google Scholar 

  10. M.H. Dehghani and H. Rastegar Sedehi, Thermodynamics of rotating black branes in (n + 1)-dimensional Einstein-Born-Infeld gravity, Phys. Rev. D 74 (2006) 124018 [hep-th/0610239] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. D.L. Wiltshire, Black holes in string generated gravity models, Phys. Rev. D 38 (1988) 2445 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. M. Aiello, R. Ferraro and G. Giribet, Exact solutions of Lovelock-Born-Infeld black holes, Phys. Rev. D 70 (2004) 104014 [gr-qc/0408078] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. M.H. Dehghani and S.H. Hendi, Thermodynamics of rotating black branes in Gauss-Bonnet-Born-Infeld gravity, Int. J. Mod. Phys. D 16 (2007) 1829 [hep-th/0611087] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. M.H. Dehghani, S.H. Hendi, A. Sheykhi and H. Rastegar Sedehi, Thermodynamics of rotating black branes in (n + 1)-dimensional Einstein-Born-Infeld-dilaton gravity, JCAP 02 (2007) 020 [hep-th/0611288] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. M.H. Dehghani, N. Alinejadi and S.H. Hendi, Topological black holes in Lovelock-Born-Infeld gravity, Phys. Rev. D 77 (2008) 104025 [arXiv:0802.2637] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. S.H. Hendi, Rotating black branes in Brans-Dicke-Born-Infeld theory, J. Math. Phys. 49 (2008) 082501 [arXiv:0808.2347] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  17. M. Hassaine and C. Martinez, Higher-dimensional black holes with a conformally invariant Maxwell source, Phys. Rev. D 75 (2007) 027502 [hep-th/0701058] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. S.H. Hendi and H. Rastegar-Sedehi, Ricci flat rotating black branes with a conformally invariant Maxwell source, Gen. Rel. Grav. 41 (2009) 1355 [arXiv:1007.2475] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. S.H. Hendi, Topological black holes in Gauss-Bonnet gravity with conformally invariant Maxwell source, Phys. Lett. B 677 (2009) 123 [arXiv:1007.2479] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. M. Hassaine and C. Martinez, Higher-dimensional charged black holes solutions with a nonlinear electrodynamics source, Class. Quant. Grav. 25 (2008) 195023 [arXiv:0803.2946] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. H. Maeda, M. Hassaine and C. Martinez, Lovelock black holes with a nonlinear Maxwell field, Phys. Rev. D 79 (2009) 044012 [arXiv:0812.2038] [INSPIRE].

    ADS  Google Scholar 

  22. S.H. Hendi and B.E. Panah, Thermodynamics of rotating black branes in Gauss-Bonnet-nonlinear Maxwell gravity, Phys. Lett. B 684 (2010) 77 [arXiv:1008.0102] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. S.H. Hendi, The relation between F (R) gravity and Einstein-conformally invariant Maxwell source, Phys. Lett. B 690 (2010) 220 [arXiv:0907.2520] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. S.H. Hendi, Slowly rotating black holes in Einstein-generalized Maxwell gravity, Prog. Theor. Phys. 124 (2010) 493 [arXiv:1008.0544] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. S.H. Hendi, Rotating black branes in the presence of nonlinear electromagnetic field, Eur. Phys. J. C 69 (2010) 281 [arXiv:1008.0168] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S.H. Hendi, Rotating black string with nonlinear source, Phys. Rev. D 82 (2010) 064040 [arXiv:1008.5210] [INSPIRE].

    ADS  Google Scholar 

  27. E. Ayon-Beato and A. Garcia, Regular black hole in general relativity coupled to nonlinear electrodynamics, Phys. Rev. Lett. 80 (1998) 5056 [gr-qc/9911046] [INSPIRE].

    Article  ADS  Google Scholar 

  28. H.P. de Oliveira, Nonlinear charged black holes, Class. Quant. Grav. 11 (1994) 1469 [INSPIRE].

    Article  ADS  Google Scholar 

  29. H.H. Soleng, Charged black points in general relativity coupled to the logarithmic U(1) gauge theory, Phys. Rev. D 52 (1995) 6178 [hep-th/9509033] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. H.P. de Oliveira, Nonlinear charged black holes, Class. Quant. Grav. 11 (1994) 1469 [INSPIRE].

    Article  ADS  Google Scholar 

  31. D. Palatnik, Born-Infeld gravitation: spherically symmetric static solutions, Phys. Lett. B 432 (1998) 287 [quant-ph/9701017] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. E. Ayon-Beato and A. Garcia, Regular black hole in general relativity coupled to nonlinear electrodynamics, Phys. Rev. Lett. 80 (1998) 5056 [gr-qc/9911046] [INSPIRE].

    Article  ADS  Google Scholar 

  33. E. Ayon-Beato and A. Garcia, Nonsingular charged black hole solution for nonlinear source, Gen. Rel. Grav. 31 (1999) 629 [gr-qc/9911084] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. E. Ayon-Beato and A. Garcia, New regular black hole solution from nonlinear electrodynamics, Phys. Lett. B 464 (1999) 25 [hep-th/9911174] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. D.A. Rasheed, Nonlinear electrodynamics: zeroth and first laws of black hole mechanics, hep-th/9702087 [INSPIRE].

  36. G. Boillat, Nonlinear electrodynamicsLagrangians and equations of motion, J. Math. Phys. 11 (1970) 941 [INSPIRE].

    Article  ADS  Google Scholar 

  37. G. Boillat, Simple waves in N-dimensional propagation, J. Math. Phys. 11 (1970) 1482.

    Article  ADS  MATH  Google Scholar 

  38. G.W. Gibbons and D.A. Rasheed, Electric-magnetic duality rotations in nonlinear electrodynamics, Nucl. Phys. B 454 (1995) 185 [hep-th/9506035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Gopakumar, S. Minwalla, N. Seiberg and A. Strominger, (OM) theory in diverse dimensions, JHEP 08 (2000) 008 [hep-th/0006062] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. T. Tamaki and K.-i. Maeda, Fate of a Reissner-Nordström black hole in the Einstein-Yang-Mills-Higgs system, Phys. Rev. D 62 (2000) 084041 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. H. Yajima and T. Tamaki, Black hole solutions in Euler-Heisenberg theory, Phys. Rev. D 63 (2001) 064007 [gr-qc/0005016] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. S. Kar and S. Majumdar, Black hole geometries in noncommutative string theory, Int. J. Mod. Phys. A 21 (2006) 6087 [hep-th/0510043] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

    ADS  Google Scholar 

  44. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. R.-G. Cai and Y.-W. Sun, Shear viscosity from AdS Born-Infeld black holes, JHEP 09 (2008) 115 [arXiv:0807.2377] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity bound, causality violation and instability with stringy correction and charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. J. Jing and S. Chen, Holographic superconductors in the Born-Infeld electrodynamics, Phys. Lett. B 686 (2010) 68 [arXiv:1001.4227] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. Q.Y. Pan, B. Wang, E. Papantonopoulos, J. Oliveira and A. Pavan, Holographic superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81 (2010) 106007 [arXiv:0912.2475] [INSPIRE].

    ADS  Google Scholar 

  51. H.J. Mosquera Cuesta and J.M. Salim, Nonlinear electrodynamics and the gravitational redshift of pulsars, Mon. Not. Roy. Astron. Soc. 354 (2004) L55 [astro-ph/0403045] [INSPIRE].

    Article  ADS  Google Scholar 

  52. H.J. Mosquera Cuesta and J.M. Salim, Nonlinear electrodynamics and the surface redshift of pulsars, Astrophys. J. 608 (2004) 925 [astro-ph/0307513] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

    ADS  Google Scholar 

  55. S. Nojiri and S.D. Odintsov, Can quantum corrected BTZ black hole anti-evaporate?, Mod. Phys. Lett. A 13 (1998) 2695 [gr-qc/9806034] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. R. Emparan, G.T. Horowitz and R.C. Myers, Exact description of black holes on branes. 2. Comparison with BTZ black holes and black strings, JHEP 01 (2000) 021 [hep-th/9912135] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. S. Hemming, E. Keski-Vakkuri and P. Kraus, Strings in the extended BTZ space-time, JHEP 10 (2002) 006 [hep-th/0208003] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. M.R. Setare, Nonrotating BTZ black hole area spectrum from quasinormal modes, Class. Quant. Grav. 21 (2004) 1453 [hep-th/0311221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. B. Sahoo and A. Sen, BTZ black hole with Chern-Simons and higher derivative terms, JHEP 07 (2006) 008 [hep-th/0601228] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. M.R. Setare, Gauge and gravitational anomalies and Hawking radiation of rotating BTZ black holes, Eur. Phys. J. C 49 (2007) 865 [hep-th/0608080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. M. Cadoni and M.R. Setare, Near-horizon limit of the charged BTZ black hole and AdS 2 quantum gravity, JHEP 07 (2008) 131 [arXiv:0806.2754] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. M.-I. Park, BTZ black hole with gravitational Chern-Simons: thermodynamics and statistical entropy, Phys. Rev. D 77 (2008) 026011 [hep-th/0608165] [INSPIRE].

    ADS  Google Scholar 

  63. M.-I. Park, BTZ black hole with higher derivatives, the second law of thermodynamics and statistical entropy: a new proposal, Phys. Rev. D 77 (2008) 126012 [hep-th/0609027] [INSPIRE].

    ADS  Google Scholar 

  64. J. Parsons and S.F. Ross, Strings in extremal BTZ black holes, JHEP 04 (2009) 134 [arXiv:0901.3044] [INSPIRE].

    Article  ADS  Google Scholar 

  65. M.R. Setare and M. Jamil, The Cardy-Verlinde formula and entropy of the charged rotating BTZ black hole, Phys. Lett. B 681 (2009) 469 [arXiv:0912.0861] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  66. S. Carlip, The (2 + 1)-dimensional black hole, Class. Quant. Grav. 12 (1995) 2853 [gr-qc/9506079] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. A. Ashtekar, J. Wisniewski and O. Dreyer, Isolated horizons in (2 + 1) gravity, Adv. Theor. Math. Phys. 6 (2002) 507 [gr-qc/0206024] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  68. T. Sarkar, G. Sengupta and B. Nath Tiwari, On the thermodynamic geometry of BTZ black holes, JHEP 11 (2006) 015 [hep-th/0606084] [INSPIRE].

    Article  ADS  Google Scholar 

  69. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  70. S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].

  72. S.P. Kim, S.K. Kim, K.-S. Soh and J.H. Yee, Renormalized thermodynamic entropy of black holes in higher dimensions, Phys. Rev. D 55 (1997) 2159 [gr-qc/9608015] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  73. G.W. Gibbons, M.J. Perry and C.N. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. J.E. Aman and N. Pidokrajt, Geometry of higher-dimensional black hole thermodynamics, Phys. Rev. D 73 (2006) 024017 [hep-th/0510139] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  75. H. Saida and J. Soda, Statistical entropy of BTZ black hole in higher curvature gravity, Phys. Lett. B 471 (2000) 358 [gr-qc/9909061] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  76. M. Cadoni, M. Melis and M.R. Setare, Microscopic entropy of the charged BTZ black hole, Class. Quant. Grav. 25 (2008) 195022 [arXiv:0710.3009] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. A. Larranaga, Entanglement entropy for the charged BTZ black hole, Bulg. J. Phys. 38 (2011)123 [arXiv:1002.3416] [INSPIRE].

    MathSciNet  Google Scholar 

  78. S. Hyun, U duality between three-dimensional and higher dimensional black holes, J. Korean Phys. Soc. 33 (1998) S532 [hep-th/9704005] [INSPIRE].

    ADS  Google Scholar 

  79. K. Sfetsos and K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for nonextremal black holes, Nucl. Phys. B 517 (1998) 179 [hep-th/9711138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. F. Canfora and A. Giacomini, BTZ-like black holes in even dimensional Lovelock theories, Phys. Rev. D 82 (2010) 024022 [arXiv:1005.0091] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  81. L. Claessens, The horizon of the BTZ black hole, arXiv:0912.2245 [INSPIRE].

  82. L. Claessens, BTZ black hole from the structure of the algebra SO(2, n), arXiv:0912.2267 [INSPIRE].

  83. S.H. Hendi, Charged BTZ-like black holes in higher dimensions, Eur. Phys. J. C 71 (2011) 1551 [arXiv:1007.2704] [INSPIRE].

    ADS  Google Scholar 

  84. J.T. Liu and P. Szepietowski, Higher derivative corrections to R-charged AdS 5 black holes and field redefinitions, Phys. Rev. D 79 (2009) 084042 [arXiv:0806.1026] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  85. Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP 12 (2007) 068 [hep-th/0606100] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  86. D. Anninos and G. Pastras, Thermodynamics of the Maxwell-Gauss-Bonnet anti-de Sitter black hole with higher derivative gauge corrections, JHEP 07 (2009) 030 [arXiv:0807.3478] [INSPIRE].

    Article  ADS  Google Scholar 

  87. R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [INSPIRE].

    ADS  Google Scholar 

  88. D.J. Gross and J.H. Sloan, The quartic effective action for the heterotic string, Nucl. Phys. B 291 (1987) 41 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  89. E.A. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].

    Article  ADS  Google Scholar 

  90. W.A. Chemissany, M. de Roo and S. Panda, α′-corrections to heterotic superstring effective action revisited, JHEP 08 (2007) 037 [arXiv:0706.3636] [INSPIRE].

    Article  ADS  Google Scholar 

  91. M. Natsuume, Higher order correction to the GHS string black hole, Phys. Rev. D 50 (1994) 3949 [hep-th/9406079] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  92. D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  93. A. Ritz and R. Delbourgo, The low-energy effective Lagrangian for photon interactions in any dimension, Int. J. Mod. Phys. A 11 (1996) 253 [hep-th/9503160] [INSPIRE].

    ADS  Google Scholar 

  94. W. Heisenberg and H. Euler, Consequences of Dirac theory of the positron, Z. Phys. 98 (1936)714 [physics/0605038] [INSPIRE].

    Article  ADS  Google Scholar 

  95. B.L. Altschueler, An alternative way to inflation and the possibility of antiinflation, Class. Quant. Grav. 7 (1990) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  96. R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [INSPIRE].

    ADS  Google Scholar 

  97. S.C. Davis, Generalized Israel junction conditions for a Gauss-Bonnet brane world, Phys. Rev. D 67 (2003) 024030 [hep-th/0208205] [INSPIRE].

    ADS  Google Scholar 

  98. M. Cataldo and A. Garcia, Three dimensional black hole coupled to the Born-Infeld electrodynamics, Phys. Lett. B 456 (1999) 28 [hep-th/9903257] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  99. R. Yamazaki and D. Ida, Black holes in three-dimensional Einstein-Born-Infeld dilaton theory, Phys. Rev. D 64 (2001) 024009 [gr-qc/0105092] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  100. Y.S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics of Einstein-Born-Infeld black holes in three dimensions, Phys. Rev. D 78 (2008) 044020 [arXiv:0804.0301] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  101. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, On the Lambert W function, Adv. Comput. Math. 5 (1996) 329.

    Article  MathSciNet  MATH  Google Scholar 

  102. M. Cvetic and S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  103. M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  104. J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].

    Article  ADS  Google Scholar 

  105. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  106. S.W. Hawking and C.J. Hunter, Gravitational entropy and global structure, Phys. Rev. D 59 (1999) 044025 [hep-th/9808085] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  107. S.W. Hawking, C.J. Hunter and D.N. Page, Nut charge, anti-de Sitter space and entropy, Phys. Rev. D 59 (1999) 044033 [hep-th/9809035] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  108. R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [INSPIRE].

    ADS  Google Scholar 

  109. R.B. Mann, Entropy of rotating Misner string space-times, Phys. Rev. D 61 (2000) 084013 [hep-th/9904148] [INSPIRE].

    ADS  Google Scholar 

  110. C.J. Hunter, The action of instantons with nut charge, Phys. Rev. D 59 (1999) 024009 [gr-qc/9807010] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Hendi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendi, S.H. Asymptotic charged BTZ black hole solutions. J. High Energ. Phys. 2012, 65 (2012). https://doi.org/10.1007/JHEP03(2012)065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)065

Keywords

Navigation