Skip to main content
Log in

Geometrothermodynamics of black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The thermodynamics of black holes is reformulated within the context of the recently developed formalism of geometrothermodynamics. This reformulation is shown to be invariant with respect to Legendre transformations, and to allow several equivalent representations. Legendre invariance allows us to explain a series of contradictory results known in the literature from the use of Weinhold’s and Ruppeiner’s thermodynamic metrics for black holes. For the Reissner–Nordström black hole the geometry of the space of equilibrium states is curved, showing a non trivial thermodynamic interaction, and the curvature contains information about critical points and phase transitions. On the contrary, for the Kerr black hole the geometry is flat and does not explain its phase transition structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibbs, J.: The collected works, vol. 1 Thermodynamics. Yale University Press, New Haven (1948)

  2. Charatheodory, C.: Untersuchungen über die Grundlagen der Thermodynamik, Gesammelte Mathematische Werke, Band 2 (Munich, 1995)

  3. Weinhold, F.: Metric Geometry of equilibrium thermodynamics I, II, III, IV, V. J. Chem. Phys. 63, 2479, 2484, 2488, 2496 (1975)

    Google Scholar 

  4. Weinhold F. (1976). Metric geometry of equilibrium thermodynamics I, II, III, IV, V. J. Chem. Phys. 65: 558

    Article  ADS  Google Scholar 

  5. Ruppeiner G. (1979). Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20: 1608

    Article  ADS  Google Scholar 

  6. Ruppeiner G. (1995). Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67: 605

    Article  ADS  MathSciNet  Google Scholar 

  7. Ruppeiner G. (1996). Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 68: 313

    Article  ADS  MathSciNet  Google Scholar 

  8. Johnston D.A., Janke W. and Kenna R. (2003). Information geometry, one, two, three (and four). Acta Phys. Polon. B 34: 4923

    ADS  MathSciNet  MATH  Google Scholar 

  9. Janke W., Johnston D.A. and Kenna R. (2004). Information geometry and phase transitions. Phys. A 336: 181

    Article  MathSciNet  Google Scholar 

  10. Santoro, M., Serge, P.: Curvature of the Weinhold metric for thermodynamical systems with 2 degrees of freedom. arXiv:math-ph/0505010 (2005)

  11. Cai R. and Cho J. (1999). Thermodynamic curvature of the BTZ black hole. Phys. Rev. D 60: 067502

    Article  ADS  MathSciNet  Google Scholar 

  12. Shen, J., Cai, R., Wang, B., Su, R.: Thermodynamic geometry and critical behavior of black holes. arXiv: gr-qc/0512035 (2005)

  13. Aman J., Bengtsson I. and Pidokrajt N. (2003). Geometry of black hole thermodynamics. Gen. Rel. Grav. 35: 1733

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Aman J., Bengtsson I. and Pidokrajt N. (2006). Flat information geometries in black hole thermodynamics. Gen. Rel. Grav. 38: 1305

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Aman J. and Pidokrajt N. (2006). Geometry of higher-dimensional black hole thermodynamics. Phys. Rev. D 73: 024017

    Article  ADS  MathSciNet  Google Scholar 

  16. Sarkar T., Sengupta G. and Tiwari B.N. (2006). On the thermodynamic geometry of BTZ black holes. JHEP 0611: 015

    Article  ADS  MathSciNet  Google Scholar 

  17. Hermann R. (1973). Geometry, physics and systems. Marcel Dekker, New York

    MATH  Google Scholar 

  18. Mrugala R. (1978). Geometrical formulation of equilibrium phenomenological thermodynamics. Rep. Math. Phys. 14: 419

    Article  Google Scholar 

  19. Mrugala R. (1985). Submanifolds in the thermodynamic phase space. Rep. Math. Phys. 21: 197

    Article  MathSciNet  MATH  Google Scholar 

  20. Torresdel Castillo G.F. and Montesinos-Velasquez M. (1993). Riemannian structure of the thermodynamic phase space. Rev. Mex. Fí s. 39: 194

    MathSciNet  Google Scholar 

  21. Hernández G. and Lacomba E.A. (1998). Contact Riemannian geometry and thermodynamics. Diff. Geom. Appl. 8: 205

    Article  MATH  Google Scholar 

  22. Quevedo H. and Zárate R.D. (2003). Differential geometry and thermodynamics. Rev. Mex. Fí s. 49(S2): 125

    Google Scholar 

  23. Quevedo H. (2007). Geometrothermodynamics. J. Math. Phys. 48: 013506

    Article  ADS  MathSciNet  Google Scholar 

  24. Stephani H., Kramer D., MacCallum M., Hoenselaers C. and Herlt E. (2003). Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Bekenstein J.D. (1973). Black holes and entropy. Phys. Rev. D 7: 2333

    Article  ADS  MathSciNet  Google Scholar 

  26. Bardeen J.M., Carter B. and Hawking S.W. (1973). The four lawas of black hole mechanics. Commun. Math. Phys. 31: 161

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Hawking S.W. (1975). Particle creation by black holes. Commun. Math. Phys. 43: 199

    Article  ADS  MathSciNet  Google Scholar 

  28. Davies P.C.W. (1978). Thermodynamics of black holes. Rep. Prog. Phys. 41: 1313

    Article  ADS  Google Scholar 

  29. Arnold V.I. (1980). Mathematical Methods of Classical Mechanics. Springer, New York

    Google Scholar 

  30. Callen H.B. (1985). Thermodynamics and an Introduction to Thermostatics. Wiley, New York

    Google Scholar 

  31. Burke W.L. (1987). Applied Differential Geometry. Cambridge University Press, Cambridge

    Google Scholar 

  32. Brody D.C. and Hughston L.P. (1998). Geometry of thermodynamic states. Phys. Lett. A 245: 73

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Brody, D.C., Hughston, L.P.: Geometrisation of statistical mechanics. arXiv:gr-qc/9708032 (1997)

  34. Brody, D.C., Hughston, L.P.: Statistical geometry in quantum mechanics. arXiv:gr-qc/9701051 (1997)

  35. Brody, D.C., Ritz, A.: Geometric phase transitions. arXiv:cond-mat/9903168 (1999)

  36. Johnston D.A., Janke W. and Kenna R. (2003). Information geometry, one, two, three (and four). Acta Phys. Pol. B 34: 4923

    ADS  MathSciNet  MATH  Google Scholar 

  37. Johnson C.V. (2003). D-Branes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  38. Quevedo, H., Vázquez, A.: Variational principles in geometrothermodynamics (2007) (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernando Quevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quevedo, H. Geometrothermodynamics of black holes. Gen Relativ Gravit 40, 971–984 (2008). https://doi.org/10.1007/s10714-007-0586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0586-0

Keywords

Navigation