Skip to main content
Log in

Role of the heat accumulation effect in the multipulse modes of the femtosecond laser microstructuring of silicon

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of quantitative evaluation of the heat accumulation effect during the femtosecond laser microstructuring of the surface of silicon are presented for discussion. In the calculations, the numerical–analytical method is used, in which the dynamics of electronic processes and lattice heating are simulated by the numerical method, and the cooling stage is described on the basis of an analytical solution. The effect of multipulse irradiation on the surface temperature is studied: in the electronic subsystem, as the dependence of the absorbance on the excited carrier density and the dependence of the absorbance on the electron-gas temperature; in the lattice subsystem, as the variation in the absorbance from pulse to pulse. It was shown that, in the low-frequency pulse-repetition mode characteristic of the femtosecond microstructuring of silicon, the heat accumulation effect is controlled not by the residual surface temperature by the time of the next pulse arrival, which corresponds to conventional concepts, but by an increase in the maximum temperature from pulse to pulse, from which cooling begins. The accumulation of the residual temperature of the surface can affect the microstructuring process during irradiation near the evaporation threshold or with increasing pulse-repetition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Cerami, E. Mazur, S. Nolte, and C. B. Schaffer, in Ultrafast Nonlinear Optics, Ed. by R. Thomson, Ch. Leburn, and D. Reid, Scottish Graduate Series (Springer International, Switzerland, 2013), Vol. 13, p. 287.

  2. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, Appl. Surf. Sci. 256, 61 (2009).

    Article  ADS  Google Scholar 

  3. M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, Appl. Phys. A 113, 273 (2013).

    Article  ADS  Google Scholar 

  4. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).

    Article  ADS  Google Scholar 

  5. W. Han, L. Jiang, X. Li, P. Liu, L. Xu, and Y. F. Lu, Opt. Express 21, 15506 (2013).

    ADS  Google Scholar 

  6. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, and M. Bounhalli, Opt. Express 19, 9035 (2011).

    Article  ADS  Google Scholar 

  7. P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, Appl. Surf. Sci. 233, 275 (2004).

    Article  ADS  Google Scholar 

  8. A. Y. Vorobyev and C. Guo, Appl. Phys. Lett. 86, 011916 (2005).

    Article  ADS  Google Scholar 

  9. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, Opt. Express 13, 4708 (2005).

    Article  ADS  Google Scholar 

  10. G. A. Martsinovskiy, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan’, and P. K. Kashkarov, Semiconductors 43, 1298 (2009).

    Article  ADS  Google Scholar 

  11. R. V. Dyukin, G. A. Martsinovskiy, G. D. Shandybina, E. B. Yakovlev, and I. V. Guk, J. Opt. Technol. 78, 558 (2011).

    Article  Google Scholar 

  12. R. V. Dyukin, G. A. Martsinovskiy, O. N. Sergaeva, G. D. Shandybina, V. V. Svirina, and E. B. Yakovlev, in Laser Pulses—Theory, Technology, and Applications (Rijeka, InTech, 2012), Vol. 7, p. 197.

    Google Scholar 

  13. I. A. Ostapenko, S. V. Zabotnov, G. D. Shandybina, L. A. Golovan’, A. V. Chervyakov, Yu. V. Ryabchikov, V. V. Yakovlev, V. Yu. Timoshenko, and P. K. Kashkarov, Izv. Akad. Nauk, Ser. Fiz. 70 (9), 1315 (2006).

    Google Scholar 

  14. Y. Han and S. Qu, Chem. Phys. Lett. 495, 241 (2010).

    Article  ADS  Google Scholar 

  15. E. B. Yakovlev, O. N. Sergaeva, V. V. Svirina, and M. V. Yarchuk, Proc. SPIE 9065, 906509 (2013).

    Article  Google Scholar 

  16. I. V. Guk, G. A. Martsinovskiy, G. D. Shandybina, and E. B. Yakovlev, Semiconductors 47, 1616 (2013).

    Article  ADS  Google Scholar 

  17. S. V. Zabotnov, I. A. Ostapenko, L. A. Golovan’, V. Yu. Timoshenko, P. K. Kashkarov, and G. D. Shandybina, Quantum Electron. 35, 943 (2005).

    Article  ADS  Google Scholar 

  18. A. Y. Vorobyev and C. Guo, Opt. Express 19, 1032 (2011).

    Article  Google Scholar 

  19. Y. Yang, J. Yang, L. Xue, and Y. Guo, Appl. Phys. Lett. 97, 141101 (2010).

    Article  ADS  Google Scholar 

  20. A. A. Vedenov and G. G. Gladush, Physical Processes in Laser Material Processing (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  21. O. Varlamova, M. Bounhallia, and J. Reif, Appl. Surf. Sci. 278, 62 (2013).

    Article  ADS  Google Scholar 

  22. Y. Ma, J. Si, X. Sun, T. Chen, and X. Hou, Appl. Surf. Sci. 313, 905 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Guk.

Additional information

Original Russian Text © I.V. Guk, G.D. Shandybina, E.B. Yakovlev, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 5, pp. 706–710.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guk, I.V., Shandybina, G.D. & Yakovlev, E.B. Role of the heat accumulation effect in the multipulse modes of the femtosecond laser microstructuring of silicon. Semiconductors 50, 694–698 (2016). https://doi.org/10.1134/S1063782616050080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616050080

Keywords

Navigation