Skip to main content

Femtosecond Laser Ablation: Fundamentals and Applications

  • Chapter
  • First Online:
Laser-Induced Breakdown Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 182))

Abstract

Traditionally nanosecond laser pulses have been used for Laser-induced Breakdown Spectroscopy (LIBS) for quantitative and qualitative analysis of the samples. Laser produced plasmas using nanosecond laser pulses have been studied extensively since 1960s. With the advent of short and ultrashort laser pulses, there has been a growing interest in the applications of femtosecond and picosecond lasers for analysis of materials using LIBS and LA-ICP-MS. The fundamentals of laser ablation process using ultrashort laser pulses are not still fully understood. Pulse duration of femtosecond laser pulse is shorter than electron-to-ion energy transfer time and heat conduction time in the sample lattice. This results in different laser ablation and heat dissipation mechanisms as compared to nanosecond laser ablation. In this chapter, the focus will be on understanding the basics of femtosecond laser ablation processes including laser target interaction, ablation efficiency, ablation threshold, laser plasma interactions, and plume hydrodynamics. Analytical figures of merit will be discussed in contrast to nanosecond LIBS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Freeman, S.S. Harilal, B. Verhoff, A. Hassanein, Plasma Sour Sci Technol 21, 055003 (2012)

    Article  ADS  Google Scholar 

  2. A. Bogaerts, Z.Y. Chen, Spectrochim. Acta B 60, 1280 (2005)

    Article  ADS  Google Scholar 

  3. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  4. A.M. Weiner, Ultrafast Optics (Wiley, New York, 2009)

    Book  Google Scholar 

  5. R.P. Drake, High-Energy-Density-Physics Fundamentals, Intertial Fusion and Experimental Astrophysics (Springer, New York, 2006)

    Google Scholar 

  6. S. Cipiccia, M.R. Islam, B. Ersfeld, R.P. Shanks, E. Brunetti, G. Vieux, X. Yang, R.C. Issac, S.M. Wiggins, G.H. Welsh, M.P. Anania, D. Maneuski, R. Montgomery, G. Smith, M. Hoek, D.J. Hamilton, N.R.C. Lemos, D. Symes, P.P. Rajeev, V.O. Shea, J.M. Dias, D.A. Jaroszynski, Nat. Phys. 7, 867 (2011)

    Article  Google Scholar 

  7. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  8. M. Nantel, J. Itatani, A.C. Tien, J. Faure, D. Kaplan, M. Bouvier, T. Buma, P. Van Rompay, J. Nees, P.P. Pronko, D. Umstadter, G.A. Mourou, IEEE J. Sel. Top. Quantum Electron. 4, 449 (1998)

    Article  Google Scholar 

  9. S.L. Chin, T.J. Wang, C. Marceau, J. Wu, J.S. Liu, O. Kosareva, N. Panov, Y.P. Chen, J.F. Daigle, S. Yuan, A. Azarm, W.W. Liu, T. Seideman, H.P. Zeng, M. Richardson, R. Li, Z.Z. Xu, Laser Phys. 22, 1 (2012)

    Article  Google Scholar 

  10. J.V. Moloney, in High-Power Laser Ablation VI, Pts 1 and 2, ed. by C.R. Phipps, vol. 6261. (Spie-Int Soc Optical Engineering, Bellingham, 2006), p. 26102

    Google Scholar 

  11. K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.P. Wolf, L. Woste, Appl. Phys. Lett. 85, 3977 (2004)

    Article  ADS  Google Scholar 

  12. S. Tzortzakis, D. Anglos, D. Gray, Opt. Lett. 31, 1139 (2006)

    Article  ADS  Google Scholar 

  13. H.L. Xu, J. Bernhardt, P. Mathieu, G. Roy, S.L. Chin, J. Appl. Phys. 101, 033124 (2007)

    Article  ADS  Google Scholar 

  14. H.A. Huang, L.M. Yang, J.A. Liu, Appl. Opt. 51, 8669 (2012)

    Google Scholar 

  15. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Appl Phys A Mater 79, 767 (2004)

    Article  ADS  Google Scholar 

  16. E.L. Gurevich, R. Hergenroder, Appl. Spectrosc. 61, 233a (2007)

    Article  ADS  Google Scholar 

  17. M. Sabsabi, in Laser-Induced Breakdown Spectroscopy, eds. by J.P. Singh, S.N. Thakur (Elsevier, Amsterdam, 2007)

    Google Scholar 

  18. V. Zorba, X.L. Mao, R.E. Russo, Appl. Phys. Lett. 95, 041110 (2009)

    Google Scholar 

  19. S.S. Harilal, G.V. Miloshevsky, T. Sizyuk, A. Hassanein, Phys. Plasmas 20, 013105 (2013)

    Article  ADS  Google Scholar 

  20. S.S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, V. Sizyuk, J. Appl. Phys. 109, 063306 (2011)

    Article  ADS  Google Scholar 

  21. R.W. Coons, S.S. Harilal, S.M. Hassan, A. Hassanein, Appl. Phys. B 107, 873 (2012)

    Article  ADS  Google Scholar 

  22. L. Jiang and H.L. Tsai, in Proceedings of NSF Workshop on Research Needs in Thermal, Aspects of Material Removal, p. 163 (2003)

    Google Scholar 

  23. A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, Phys. Rev. B 61, 11437 (2000)

    Article  ADS  Google Scholar 

  24. R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Phys Rev B 62, 13167 (2000)

    Article  ADS  Google Scholar 

  25. B. Verhoff, S.S. Harilal, A. Hassanein, J. Appl. Phys. 111, 123304 (2012)

    Article  ADS  Google Scholar 

  26. S. Amoruso, X. Wang, C. Altucci, C. de Lisio, M. Armenante, R. Bruzzese, N. Spinelli, R. Velotta, Appl. Surf. Sci. 186, 358 (2002)

    Article  ADS  Google Scholar 

  27. T. Donnelly, J.G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, J. Appl. Phys. 108, 043309 (2010)

    Google Scholar 

  28. Z. Zhang, P.A. VanRompay, J.A. Nees, P.P. Pronko, J. Appl. Phys. 92, 2867 (2002)

    Article  ADS  Google Scholar 

  29. S. Amoruso, X. Wang, C. Altucci, C. de Lisio, M. Armenante, R. Bruzzese, R. Velotta, Appl. Phys. Lett. 77, 3728 (2000)

    Article  ADS  Google Scholar 

  30. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994)

    Article  ADS  Google Scholar 

  31. M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J. Appl. Phys. 85, 6803 (1999)

    Article  ADS  Google Scholar 

  32. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949 (2002)

    Article  ADS  Google Scholar 

  33. M. Lenzner, J. Kruger, W. Kautek, F. Krausz, Appl Phys A Mater 69, 465 (1999)

    Article  ADS  Google Scholar 

  34. V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, R. Hergenroder, J. Anal. At. Spectrom. 16, 616 (2001)

    Article  Google Scholar 

  35. K.H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, M. Schmidt, Physcs Proc 12, 230 (2011)

    Article  ADS  Google Scholar 

  36. E.G. Gamaly, Phys Rep Rev Sect Phys Lett 508, 91 (2011)

    Google Scholar 

  37. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Appl. Phys. A Mater. 63, 109 (1996)

    Google Scholar 

  38. B. Le Drogoff, F. Vidal, S. Laville, M. Chaker, T. Johnston, O. Barthelemy, J. Margot, M. Sabsabi, Appl Opt 44, 278 (2005)

    Article  ADS  Google Scholar 

  39. M. Baudelet, L. Guyon, J. Yu, J.P. Wolf, T. Amodeo, E. Frejafon, P. Laloi, J. Appl. Phys. 99, 084701 (2006)

    Google Scholar 

  40. J.B. Sirven, B. Bousquet, L. Canioni, L. Sarger, Spectrochim. Acta B 59, 1033 (2004)

    Article  ADS  Google Scholar 

  41. X. Zeng, X.L. Mao, R. Greif, R.E. Russo, Appl Phys a-Mater 80, 237 (2005)

    Article  ADS  Google Scholar 

  42. B. Verhoff, S.S. Harilal, J. Freeman, P.K. Diwakar, A. Hassanein, J. Appl. Phys. 112, 093303 (2012)

    Article  ADS  Google Scholar 

  43. R. Osellame, G. Cerullo, R. Ramponi, Femtosecond Laser Micromachining (Springer, New York, 2012)

    Book  Google Scholar 

  44. C. Liu, X.L. Mao, S.S. Mao, X. Zeng, R. Greif, R.E. Russo, Anal. Chem. 76, 379 (2004)

    Article  Google Scholar 

  45. S.S. Harilal, N. Farid, A. Hassanein, V.M. Kozhevin, J. Appl. Phys. 114, 203302 (2013)

    Google Scholar 

  46. S. Noel, J. Hermann, T. Itina, Appl. Surf. Sci. 253, 6310 (2007)

    Article  ADS  Google Scholar 

  47. B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T.W. Johnston, S. Laville, F. Vidal, Y. von Kaenel, Spectrochim. Acta B 56, 987 (2001)

    Article  ADS  Google Scholar 

  48. A. De Giacomo, M. Dell’Aglio, A. Santagata, R. Teghil, Spectrochim. Acta B 60, 935 (2005)

    Article  ADS  Google Scholar 

  49. J.R. Freeman, S.S. Harilal, P.K. Diwakar, B. Verhoff, A Hassanein, Spectrochim. Acta B 87, 43 (2013)

    Google Scholar 

  50. G.W. Rieger, A. Taschuk, Y.Y. Tsui, R. Fedosejevs, Spectrochim. Acta B 58, 497 (2003)

    Article  ADS  Google Scholar 

  51. S. Yalcin, Y.Y. Tsui, R. Fedosejevs, J. Anal. At. Spectrom. 19, 1295 (2004)

    Article  Google Scholar 

  52. S. Sunku, M.K. Gundawar, A.K. Myakalwar, P.P. Kiran, S.P. Tewari, S.V. Rao, Spectrochim. Acta B, 79–80, 31 (2013)

    Google Scholar 

  53. F.C. De Lucia, J.L. Gottfried, A.W. Miziolek, Opt. Express 17, 419 (2009)

    Article  ADS  Google Scholar 

  54. K.F. Al-Shboul, S.S. Harilal, A. Hassanein, Appl. Phys. Lett. 100, 221106 (2012)

    Article  ADS  Google Scholar 

  55. K.F. Al-Shboul, S.S. Harilal, A. Hassanein, Appl. Phys. Lett. 99, 131506 (2011)

    Article  ADS  Google Scholar 

  56. S.S. Harilal, C.V. Bindhu, R.C. Issac, V.P.N. Nampoori, C.P.G. Vallabhan, J. Appl. Phys. 82, 2140 (1997)

    Article  ADS  Google Scholar 

  57. S.S. Harilal, B. O’Shay, M.S. Tillack, M.V. Mathew, J. Appl. Phys. 98, 013306 (2005)

    Article  ADS  Google Scholar 

  58. R.W. Coons, S.S. Harilal, M. Polek, A. Hassanein, Anal Bioanal Chem 400, 3239 (2011)

    Article  Google Scholar 

  59. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997), p. 19

    Google Scholar 

  60. G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, N. Omenetto, Spectrochim. Acta B 65, 86 (2010)

    Article  ADS  Google Scholar 

  61. N. Farid, S.S. Harilal, H. Ding, A. Hassanein, Appl. Phys. Lett. 103, 191112 (2013)

    Google Scholar 

  62. M. Yoshida, Y. Fujimoto, Y. Hironaka, K.G. Nakamura, K. Kondo, M. Ohtani, H. Tsunemi, Appl. Phys. Lett. 73, 2393 (1998)

    Article  ADS  Google Scholar 

  63. U. Teubner, G. Kuhnle, F.P. Schafer, Appl. Phys. Lett. 59, 2672 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. DOE, Office of National Nuclear Security Administration (NNSA) under Award Nos. DE-NA0000463 and DE-NA0001174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivanandan S. Harilal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harilal, S.S., Freeman, J.R., Diwakar, P.K., Hassanein, A. (2014). Femtosecond Laser Ablation: Fundamentals and Applications. In: Musazzi, S., Perini, U. (eds) Laser-Induced Breakdown Spectroscopy. Springer Series in Optical Sciences, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45085-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45085-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45084-6

  • Online ISBN: 978-3-642-45085-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics