Skip to main content
Log in

Comparison of ISSR, IRAP and REMAP markers for assessing genetic diversity in different species of Brassica sp.

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Molecular markers provide facilities in order to study genetic diversity and relationship among genotypes. In this study, genetic diversity among 35 genotype of Brassica sp. (belonging B. napus, B. juncea, B. rapa, B. nigra) were determined using 13 ISSR, 3 IRAP markers and 18 REMAP (primer combinations of ISSR and retrotransposon primer). The percentage of polymorphism for ISSR, IRAP and REMAP was 96.38, 94 and 96%, respectively. By comparison between markers, ISSRs indicated the highest expected heterozygosity (He) and Shannon’s information index (I) with value of 0.34 and 0.51, respectively, while REMAP marker had by far the highest number of polymorphic bands (340) and marker index (7.1) among all fragments scored over all markers. In pattern of clustering based on Bayesian methods, K = 8 was resulted for combined data clustering that was more organized clustering for genotypes compared to others. This research suggests the combined data of ISSR, IRAP and REMAP markers are most reliable than each solely marker whilst have been clustered genotypes in their taxonomic classification of Brassica without any mixture. Principle coordinate analysis (PCoA) separated 35 genotypes in four groups which all of genotypes were clustered correctly based on their taxonomic classification. The findings of this study provide the valuable insight into the Brassica species relationships in terms of similarity among genotypes which can be helpful in breeding programs, and also demonstrate that retrotransposon markers are legible for genetic diversity and next genetic analysis in Brassica genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Food and Agriculture Organization (FAO), Crop Production Statistics, 2012. http://www.fao.org.

  2. Fu, T.D., Yang, G.S., Tu, J.X. and Ma, C.Z., The present and future of rapeseed production in China, China Oils Fats, 2003, vol. 28, pp.11–13.

    Google Scholar 

  3. McVetty, P.B.E., Scarth, R., Fernando, W.G.D., et al., Brassica seed quality breeding at the university of Manitoba, in Proceedings of 12th International Rapeseed Congress: Genetics and Breeding, Wuhan, China, 2007, pp. 2–4.

    Google Scholar 

  4. Knapp, S.J., Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes, Crop. Sci., 1998, vol. 38, no. 5, pp. 1164–1174.

    Article  Google Scholar 

  5. Curn, V. and Zaludova, J., Fingerprinting of oilseed rape cultivars, Adv. Bot. Res., 2007, vol. 45, pp. 155–179.

    Article  CAS  Google Scholar 

  6. Pradeep Reddy, M., Sarla, N., and Siddiq, E.A., Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding, Euphytica, 2002, vol. 128, no. 1, pp. 9–17.

    Article  CAS  Google Scholar 

  7. Joshi, S.P., Gupta, V.S., Aggarwal, R.K., et al., Genetic diversity and phylogenetic relationship as revealed by inter-simple sequence repeat (ISSR) polymorphism in the genus Oryza, Theor. Appl. Genet., 2000, vol. 100, no. 8, pp. 1311–1320.

    Article  CAS  Google Scholar 

  8. Hajiyev, E.S., Akparov, Z.I., Aliyev, R.T., et al., Genetic polymorphism of durum wheat (Triticum durum Desf.) accessions of Azerbaijan, Russ. J. Genet., 2015, vol. 51, no. 9, pp. 863–870.

    Article  CAS  Google Scholar 

  9. Liu, B. and Wendel, J.F., Inter simple sequence repeat (ISSR) polymorphisms as a genetic marker system in cotton, Mol. Ecol. Notes, 2001, vol.1, no. 3, pp. 205–208.

    Article  CAS  Google Scholar 

  10. Wakui, K., Iwata, H., Takahashi, Y., and Fujigaki, J., Assessment of the congruity of genetic relationships and variation revealed by individual-and bulked-samples-based approaches using RAPD and ISSR markers in Japanese turnip (Brassica rapa ssp. rapa) cultivars, Breed. Sci., 2009, vol. 59, no. 4, pp. 447–452.

    Article  CAS  Google Scholar 

  11. Parsaeian, M., Mirlohi, A., Saeidi, G., Study of genetic variation in sesame (Sesamum indicum L.) using agromorphological traits and ISSR markers, Russ. J. Genet., 2011, vol. 47, no. 3, pp. 314–321.

    Article  CAS  Google Scholar 

  12. Grzebelus, D., Transposon insertion polymorphism as a new source of molecular markers, J. Fruit Ornam. Plant Res., 2006, vol. 14, no. 1, pp. 21–29.

    CAS  Google Scholar 

  13. Lee, D., Ellis, T.H.N., Turner, L., et al., A copia-like element in Pisum demonstrates the uses of dispersed repeated sequences in genetic analysis, Plant Mol. Biol., 1990, vol.15, no. 5, pp. 707–722.

    Article  CAS  PubMed  Google Scholar 

  14. Kumar, A., The adventures of the Ty1-copia group of retrotransposons in plants, Trends Genet., 1996, vol. 12, no. 2, p. 4143.

    Article  Google Scholar 

  15. Li, M.T., Chen, X., and Meng, J.L., Intersubgenomic heterosis in rapeseed production with a partial newtyped Brassica napus containing subgenome Ar from B. rapa and Cc from Brassica carinata, Crop Sci., 2006, vol. 46, no. 1, pp. 234–242.

    Article  CAS  Google Scholar 

  16. SanMiguel, P. and Bennetzen, J.I., Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons, Ann. Bot., 1998, vol. 81, pp. 37–44.

    Article  Google Scholar 

  17. Schulman, A.H., Flavell, A.J., and Ellis, T.H., The application of LTR retrotransposons as genetic markers in plants, Methods Mol. Biol., 2004, vol. 260, pp. 145–173.

    CAS  PubMed  Google Scholar 

  18. Waugh, R., McLean, K., Flavell, A.J., et al., Genetic distribution of BARE-1 retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP), Mol. Gen. Genet., 1997, vol. 253, no. 6, pp. 687–694.

    Article  CAS  PubMed  Google Scholar 

  19. Kalendar, R., Grob, T., Regina, M., et al., IRAP and REMAP: two retrotransposon-based DNA fingerprinting techniques, Theor. Appl. Genet., 1999, vol. 98, no. 5, pp. 704–711.

    Article  CAS  Google Scholar 

  20. Kalendar R. and Schulman, A.H., IRAP and REMAP for retrotransposon-based genotyping and fingerprinting, Nat. Protocl., 2006, vol. 1, no. 5, pp. 2478–2484.

    Article  CAS  Google Scholar 

  21. Saeidi, H., Rahiminejad, M.R., and Heslop-Harrison, J.S., Retroelement insertional polymorphisms, diversity and phylogeography within diploid, D-genome Aegilops tauschii (Triticeae, Poaceae) sub-taxa in Iran, Ann. Bot., 2008, vol. 101, no. 6, pp. 855–861.

    CAS  Google Scholar 

  22. Manninen, O., Kalendar, R., Robinson, J., and Schulman, A.H., Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley, Mol. Gen. Genet., 2000, vol. 264, no. 3, pp. 325–334.

    Article  CAS  PubMed  Google Scholar 

  23. Leigh, F., Kalendar, R., Lea, V., et al., Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques, Mol. Gen. Genomics, 2003, vol. 269, no. 4, pp. 464–474.

    Article  CAS  Google Scholar 

  24. Bernet, G.P., Mestre, P.F., Pina, J.A., and Asins, M.J., Molecular discrimination of lemon cultivars, Hortscience, 2004, vol. 39, no. 1, pp. 165–169.

    CAS  Google Scholar 

  25. Alavi-Kia, S.S., Mohammadi, S.A., Aharizad, S., and Moghaddam, M., Analysis of genetic diversity and phylogenetic relationships in Crocus genus of Iran using inter-retrotransposon amplified polymorphism, Biotechnol. Biotec. EQ, 2008, vol. 22, no. 3, pp. 795–800.

    Article  CAS  Google Scholar 

  26. Yuying, S., Xiajun, D., Fei, W., et al., Analysis of genetic diversity in Japanese apricot (Prunus mume Sieb. et Zucc.) based on REMAP and IRAP molecular markers, Sci. Hortic., 2011, vol. 132, no. 1, pp. 50–58.

    Article  Google Scholar 

  27. Huo, H., Conner, J.A., and Ozias-Akins, P., Genetic mapping of the apospory-specific genomic region in Pennisetum squamulatum using retrotransposon-based molecular markers, Theor. Appl. Genet., 2009, vol. 119, no. 2, pp. 199–212.

    Article  CAS  PubMed  Google Scholar 

  28. Boronnikova, S.V. and Kalendar, R.N., Using IRAP markers for analysis of genetic variability in populations of resource and rare species of plants, Russ. J. Genet., 2010, vol. 46, no. 1, pp. 36–42.

    Article  CAS  Google Scholar 

  29. Cakmak, B., Marakli, S., and Gozukirmizi, N., SIRE1 retrotransposons in barley (Hordeum vulgare L.), Russ. J. Genet., 2015, vol. 51, no. 7, pp. 661–672.

    Article  CAS  Google Scholar 

  30. Cabo, S., Carvalho, A., Rocha, L., and Lima-Brito, J., IRAP, REMAP and ISSR fingerprinting in newly formed hexaploid Tritordeum (X Tritordeum Ascherson et Graebner) and respective parental species, Plant Mol. Biol. Rep., 2013, vol. 32, no. 3, pp. 761–770.

    Article  Google Scholar 

  31. Carvalho, A., Guedes-Pinto, H., Martins-Lopes, P., and Lima-Brito, J., Genetic variability analysis in Old Portuguese bread wheat cultivars assayed by IRAP and REMAP markers, Ann. Appl. Biol., 2010, vol. 156, no. 3, pp. 337–345.

    Article  CAS  Google Scholar 

  32. Carvalho, A., Guedes-Pinto, H., and Lima-Brito, J., Genetic diversity in Old Portuguese durum wheat cultivars assessed by retrotransposon based markers, Plant Mol. Biol. Rep., 2012, vol. 30, no. 3, pp. 578–589.

    Article  Google Scholar 

  33. Dellaporta, S.L., Wood J., and Tickes, J.B., A plant molecular DNA mini-preparation, Version II, Plant Mol. Biol. Rep., 1993, vol. 1, no. 4, pp. 19–21.

    Article  Google Scholar 

  34. Kalendar, R., Tanskanen, J., Chang, W., et al., Cassandra retrotransposons carry independently transcribed 5S RNA, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 105, no. 15, pp. 5833–5838.

    Article  Google Scholar 

  35. Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update, Bioinformatics, 2012, vol. 28, no. 19, pp. 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pritchard, J.K., Wen, W., and Falush, D., Documentation for Structure software v. 2.3, 2010.

    Google Scholar 

  37. Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software Structure: a simulation study, Mol. Ecol., 2005, vol. 14, no. 8, pp. 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  38. Huson, D.H. and Bryant, D., Documentation for SplitsTree4 v. 4.12.6, 2012.

    Google Scholar 

  39. Scariot, V., De Keyser, E., Handa, T., and De Riek, J., Comparative study of the discriminating capacity and effectiveness of AFLP, STMS and EST markers in assessing genetic relationships among evergreen azaleas, Plant Breed., 2007, vol. 126, no. 2, pp. 207–212.

    CAS  Google Scholar 

  40. Powell, W., Morgante, M., Andre, C., et al., The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis, Mol. Breed., 1996, vol. 2, no. 3, pp. 225–238.

    CAS  Google Scholar 

  41. Branco, C.J., Vieira, E.A., Malone, G., et al., IRAP and REMAP assessments of genetic similarity in rice, J. Appl. Genet., 2007, vol. 48, no. 2, pp. 107–113.

    Article  PubMed  Google Scholar 

  42. Abdollahi Mandoulakani, B., Piri, Y., Darvishzadeh, R., et al., Retroelement insertional polymorphism and genetic diversity in Medicago sativa populations revealed by IRAP and REMAP markers, Plant Mol. Biol. Rep., 2012, vol. 30, no. 2. pp. 286–296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mahjoob.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahjoob, B., Zarini, H.N., Hashemi, S.H. et al. Comparison of ISSR, IRAP and REMAP markers for assessing genetic diversity in different species of Brassica sp.. Russ J Genet 52, 1272–1281 (2016). https://doi.org/10.1134/S1022795416120073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416120073

Keywords

Navigation