Skip to main content
Log in

The Formation of Continental Crust from a Physics Perspective

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The generation of crustal material and the formation of continental crust with a thickness of ≈40 km involve different physical mechanisms operating over different time-scales and length-scales. This review focusses on the building of a thick crustal assemblage and on the vertical dimension where the consequences of gravity-driven processes are expressed most clearly. Continental crustal material is produced by a sequence of crust and mantle mlelting, fractionation of basaltic melts and sinking of dense mafic cumulates. The repeated operation of these mechanisms over tens of million years leads to a thick stably stratified crust. We evaluate the main mechanisms involved from a physics perspective and identify the key controls and constraints, with special attention to thermal requirements. To form magma reservoirs able to process significant magma volumes and to allow the foundering of mafic cumulates, melt must be fed locally at rates that are larger than that of average crustal growth. This requires the temporary focussing of magmatic activity in a few centers. In some cases, foundering of dense cumulates does not go to completion, leaving a deformed residual body bearing tell-tale traces of the process. Crust must be thicker than a threshold value in a 30–45 km range for mafic cumulates to sink into the mantle below the crust. Once that threshold thickness has been reached, further additions lead to increase the proportion of felsic material in the crust at the expense of mafic lithologies which disappear from the crust. This acts to enhance radiogenic heat production in the crust. One consequence is that crustal temperatures can be kept at high values in times of diminished melt input and also when magmatic activity stops altogether, which may lead to post-orogenic intracrustal melting and differentiation. Another consequence is that the crust becomes too weak mechanically to withstand the elevation difference with neighbouring terranes, which sets a limit on crustal thickening. The thermal structure of the evolving crust is a key constraint on the overall process and depends strongly on radiogenic heat production, which is surely one of the properties that make continental crust very distinctive. In the Archean Superior Province, Canada, the formation of juvenile continental crust and its thermal maturation 2.7 Gy ago can be tracked quite accurately and reproduced by calculations relying on the wealth of heat flow and heat production data available there. Physical models of magma ascent and storage favour the formation of magma reservoirs at shallow levels. This suggests that crustal growth proceeds mostly from the top down, with material that gets buried to increasingly large depths. Vertical growth is accompanied by lateral spreading in two different places. Within the crust, magma intrusions are bound to extend in the horizontal direction. Deeper down, lateral variations of Moho depth that develop due to the focussing of magmatic activity get relaxed by lower crustal flow. This review has not dealt with processes at the interface between the growing crust and the mantle, which may well be where dikes get initiated by mechanisms that have so far defied theoretical analyses. Research in this particular area is required to further our understanding of continental crust formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.

Similar content being viewed by others

REFERENCES

  1. G. A. Abers, “Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematic,” Phys. Earth Plaet. Inter. 149 (1–2), 7–29 (2005).

    Article  Google Scholar 

  2. G. A. Abers, “Hydrated subducted crust at 100–250 km depth,” Earth Planet. Sci. Lett. 176, 323–330 (2000).

    Article  Google Scholar 

  3. J. Adam, S. Turner, T. Rushmer, “The genesis of silicic arc magmas in shallow crustal cold zones,” Lithos 264, 472–494 (2016).

    Article  Google Scholar 

  4. T. J. Ahrens and G. Schubert, “Gabbro–eclogite reaction rate and its geophysical significance,” Rev. Geophys. Sp. Phys. 13 (2), 383–400 (1975).

    Article  Google Scholar 

  5. C. Annen, J. D. Blundy, and R. S. J. Sparks, “The genesis of intermediate and silicic magmas in deep crustal hot zones,” J. Petrol. 47, 505–539 (2006).

    Article  Google Scholar 

  6. R. J. Arculus, O. Ishizuka, K. A. Bogus, M. Gurnis, R. Hickey–Vargas, M. H. Al-Jahdali, A. N. Bandini-Maeder, A. P. Barth, P. A. Brandl, L. Drab, R. Do Monte Guerra, M. Hamada, F. Jiang, K. Kanayama, S. Kender, et al., “A record of spontaneous subduction initiation in the Izu–Bonin–Mariana arc,” Nature Geosci. 8, 728–733 (2015).

    Article  Google Scholar 

  7. N. T. Arndt and S. L. Goldstein, “An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling,” Tectonophysics 161, 201–212 (1989).

    Article  Google Scholar 

  8. E. V. Artyushkov, “Stresses in the lithosphere caused by crustal thickness inhomogeneities,” J. Geophys. Res. Solid Earth 78, 7675–7708 (1973).

    Article  Google Scholar 

  9. E. V. Artyushkov, “Can the Earth’s crust be in a state of isostasy? J. Geophys. Res. Solid Earth 79, 741–752 (1974).

    Article  Google Scholar 

  10. P. D. Asimow and M. S. Ghiorso, “Algorithmic modifications extending MELTS to calculate subsolidus phase relations,” Am. Mineral. 83, 1127–1132 (1998).

    Article  Google Scholar 

  11. G. Baer, “Mechanisms of dike propagation in layered rocks and in massive, porous sedimentary rocks,” J. Geophys. Res. Solid Earth 96, 11,911–11,929 (1991).

    Article  Google Scholar 

  12. C. Bassin, G. Laske, and G. Masters, “The current limits of resolution for surface wave tomography in North America,” EOS Trans. Am. Geophys. Union 81, F897 (2000).

    Google Scholar 

  13. P. Bird, “Lateral extrusion of lower crust from under high topography in the isostatic limit,” J. Geophys. Res.: Solid Earth 96 (B6), 10275–10286 (1991).

    Article  Google Scholar 

  14. M. Bonafede and E. Rivalta, “On tensile cracks close to and across the interface between two welded elastic half–spaces,” Geophys. J. Int. 138, 410–434 (1999).

    Article  Google Scholar 

  15. M. Bott, “Plate boundary forces at subduction zones and trench–arc compression,” Tectonophysics 170, 1–15 (1989).

    Article  Google Scholar 

  16. W. Brace and D. Kohlstedt, “Limits on lithospheric stress imposed by laboratory experiments,” J. Geophys. Res.: Solid Earth 85 (B11), 6248–6252 (1980a).

    Article  Google Scholar 

  17. W. F. Brace and D. L. Kohlstedt, “Limits on lithospheric stress imposed by laboratory experiments,” J. Geophys. Res. 85, 6248–6252 (1980b).

    Article  Google Scholar 

  18. W. R. Buck, “Modes of continental lithospheric extension,” J. Geophys. Res. Solid Earth 96, 20 (1991).

    Article  Google Scholar 

  19. E. Burov, C. Jaupart, and L. Guillou–Frottier, “Ascent and emplacement of buoyant magma bodies in brittle–ductile upper crust,” J. Geophys. Res.: Solid Earth (1978–2012), 108 (B4) (2003).

  20. J. D. Byerlee, “Friction of rocks,” Pure. Appl. Geophys. 116, 615–626 (1978).

    Article  Google Scholar 

  21. I. Campbell, “Some problems with the cumulus theory,” Lithos 11 (4), 311–323 (1978).

    Article  Google Scholar 

  22. K. D. Card, “A review of the Superior Province of the Canadian Shield, a product of Archean accretion,” Precambrian Res. 48, 99–156 (1990).

    Article  Google Scholar 

  23. R. Carlson and G. Raskin, “Density of the ocean crust,” Nature 311 (5986), 555–558 (1984).

    Article  Google Scholar 

  24. R. Cawthorn and N. McKenna, “The extension of the Western Limb, Bushveld Complex (south africa), at Cullinan diamond mine,” Mineral. Mag. 70 (3), 241–256 (2006).

    Article  Google Scholar 

  25. N. I. Christensen and W. D. Mooney, “Seismic velocity structure and composition of the continental crust: a global view,” J. Geophys. Res. Solid Earth 100, 9761–9788 (1995).

    Article  Google Scholar 

  26. J. Cole, S. J. Webb, and C. A. Finn, “Gravity models of the Bushveld complex–have we come full circle?” J. African Earth Sci. 92, 97–118 (2014).

    Article  Google Scholar 

  27. J. Connolly, “Multivariable phase diagrams: an algorithm based on generalized thermodynamics,” Am J Sci 290, 666–718 (1990).

    Article  Google Scholar 

  28. A. Copley, J.-P. Avouac, and J.-Y. Royer, “India–Asia collision and the Cenozoic slowdown of the Indian Plate: implications for the forces driving plate motions,” J. Geophys. Res.: Solid Earth 115 (B3), 2010.

  29. C. Corry, “Laccoliths: mechanics of emplacement and growth,” Geol. Soc. Am. Spec. Pap. 220 (1988).

  30. P. A. Cundall, “Numerical experiments on localization in frictional materials,” Ingenieur–Archiv 59 (2), 148–159 (1989).

    Article  Google Scholar 

  31. J. de Bremond d’Ars, C. Jaupart, and R. S. J. Sparks, “Distribution of volcanoes in active margins,” J. Geophys. Res. Solid Earth 100, 20 (1995).

    Google Scholar 

  32. C. H. Emeleus and V. R. Troll, “The Rum igneous centre, Scotland,” Mineral. Mag. 78, 805–839 (2014).

    Article  Google Scholar 

  33. C. H. Emeleus, M. J. Cheadle, R. H. Hunter, B. G. J. Upton, and W. J. Wadsworth, “The Rum layered suite,” Developments in Petrology 15, 403–439 (1996).

    Article  Google Scholar 

  34. P. C. England and A. B. Thompson, “Pressure–temperature–time paths of regional metamorphism. I. Heat transfer during the evolution of regions of thickened continental crust,” J. Petrol. 25, 894–928 (1984).

    Article  Google Scholar 

  35. P. C. England, “Diffuse continental deformation: length scales, rates and metamorphic evolution,” Phil. Trans. R. Soc. Lond. A 321, 3–22 (1987).

    Article  Google Scholar 

  36. I. J. Ferguson, J. Craven, R. Kurtz, D. Boerner, R. Bailey, X. Wu, M. Orellana, J. Spratt, G. Wennberg, and A. Norton, “Geoelectric response of Archean lithosphere in the western Superior Province, central Canada,” Phys. Earth Planet. Inter. 150, 123–143 (2005).

    Article  Google Scholar 

  37. L. Fleitout and C. Froidevaux, “Tectonic stresses in the lithosphere,” Tectonics 2, 315–324 (1983).

    Article  Google Scholar 

  38. D. W. Forsyth and S. Uyeda, “On the relative importance of the driving forces of plate motions,” Geophys. J. R. Astronom. Soc. 43, 163–200 (1975).

    Article  Google Scholar 

  39. D. M. Fountain, “Is there a relationship between seismic velocity and heat production for crustal rocks?” Earth Planet. Sci. Lett. 79, 145–150 (1986).

    Article  Google Scholar 

  40. E. Francis, “Magma and sediment – I. Emplacement mechanism of late Carboniferous tholeiite sills in northern Britain,” J. Geol. Soc. London 139, 1–20 (1982).

    Article  Google Scholar 

  41. Y. Gaudemer, P. Tapponnier, and C. Jaupart, “Thermal control on post-orogenic extension in collision belts,” Earth Planet. Sci. Lett. 89, 48–62 (1988).

    Article  Google Scholar 

  42. M. S. Ghiorso, and R. O. Sack, “Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures,” Contrib. Mineral. Petrol. 119 (2–3), 197–212 (1995).

    Article  Google Scholar 

  43. A. F. Glazner, J. M. Bartley, D. S. Coleman, W. Gray, and R. Z. Taylor, “Are plutons assembled over millions of years by amalgamation from small magma chambers,” GSA Today 14, 1099 (2004).

    Article  Google Scholar 

  44. A. R. Greene, S. M. DeBari, P. B. Kelemen, J. Blusztajn, and P. D. Clift, “A detailed geochemical study of island arc crust: the Talkeetna arc section, south–central Alaska,” J. Petrol. 47 (6), 1051–1093 (2006).

    Article  Google Scholar 

  45. W. Griffin, S. O’Reilly, and C. Ryan, “The composition and origin of sub-continental lithospheric mantle,” Geochem. Soc. Spec. Publ. 6, 13–45 (1999).

    Google Scholar 

  46. X. Gu, R. Tenzer, and V. Gladkikh, “Empirical models of the ocean-sediment and marine sediment–bedrock density contrasts,” Geosci. J. 18, 439–447 (2014).

    Article  Google Scholar 

  47. L. Guillou, J. C. Mareschal, C. Jaupart, C. Gariepy, G. Bienfait, and R. Lapointe, “Heat flow and gravity structure of the Abitibi belt, Superior Province, Canada,” Earth Planet. Sci. Lett. 122, 447–460 (1994).

    Article  Google Scholar 

  48. B. R. Hacker, “Eclogite formation and the rheology, buoyancy, seismicity, and H2O content of oceanic crust,” Geophys. Monogr. Ser. 96, 337–346 (1996).

    Google Scholar 

  49. B. R. Hacker, L. Mehl, P. B. Kelemen, M. Rioux, M. D. Behn, and P. Luffi, “Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry,” J. Geophys. Res. Solid Earth 113 (B3), B03204 (2008).

    Article  Google Scholar 

  50. T. C. Hammer, R. M. Clowes, F. A. Cook, A. J. van der Velden, and K. van Vasude, “The Lithoprobe trans–continental lithospheric cross sections: imaging the internal structure of the North American continent,” Can. J. Earth Sci. 47, 821–857 (2010).

    Article  Google Scholar 

  51. L. M. Heaman, C. O. Bohm, N. Machado, T. E. Krogh, W. Weber, and M. T. Corkery, “The Pikwitonei Granulite Domain, Manitoba: a giant Neoarchean high–grade terrane in the northwest Superior Province,” Can. J. Earth Sci. 48, 205–245 (2011).

    Article  Google Scholar 

  52. W. Hinze, J. Bradley, and A. Brown, “Gravimeter survey in the Michigan basin deep borehole,” J. Geophys. Res. Solid Earth 83, 5864–5868 (1978).

    Article  Google Scholar 

  53. K. Hirose and I. Kushiro, “Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond,” Earth Planet. Sci. Lett. 114 (4), 477–489 (1993).

    Article  Google Scholar 

  54. W. S. Holbrook, D. Lizarralde, S. McGeary, N. Bangs, and J. Diebold, “Structure and composition of the Aleutian island arc and implications for continental crustal growth,” Geology 27, 31–34 (1999).

    Article  Google Scholar 

  55. T. J. B. Holland, and R. R. Powell, “An internally consistent thermodynamic data set for phases of petrological interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  56. M. Holness, M. Hallworth, A. Woods, and R. Sides, “Infiltration metasomatism of cumulates by intrusive magma replenishment: the wavy horizon, Isle of Rum, Scotland,” J. Petrol. 48 (3), 563–587 (2007).

    Article  Google Scholar 

  57. A. D. Huerta, L. H. Royden, and K. V. Hodges, “The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating,” J. Geophys. Res. Solid Earth 103, 15287–15302 (1998).

    Article  Google Scholar 

  58. A. Indares and T. Rivers, “Textures, metamorphic reactions and thermobarometry of eclogitized metagabbros: a Proterozoic example,” Europ. J. Mineral. 7 (1), 43–56 (1995).

    Article  Google Scholar 

  59. T. N. Irvine, “Crystallization sequences in the muskox intrusion and other layered intrusions. i. olivine–pyroxene–plagioclase relations,” Geol. Soc. S. Afr. Spec. Publ. 1 (7478), 441–476 (1970).

    Google Scholar 

  60. H. Isnard and C. Gariepy, “Sm–Nd, Lu–Hf and Pb–Pb signatures of gneisses and granitoids from the La Grande belt: extent of late Archean crustal recycling in the northeastern Superior Province, Canada,” Geochim. Cosmochim. Acta 68, 1099–1113 (2004).

    Article  Google Scholar 

  61. O. Jagoutz and P. B. Kelemen, “Role of arc processes in the formation of continental crust,” Annu. Rev. Earth Planet. Sci. 43, 363–404 (2015).

    Article  Google Scholar 

  62. O. E. Jagoutz and M. Schmidt, “The formation and bulk composition of modern juvenile continental crust: the Kohistan arc,” Chem. Geol. 298–299, 79–96 (2012).

    Article  Google Scholar 

  63. B. Jamtveit, K. Bucher–Nurminen, and H. Austrheim, “Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen Arcs, Western Norway,” Contrib. Mineral. Petrol. 104 (2), 184–193 (1990).

    Article  Google Scholar 

  64. C. Jaupart and C. J. Allegre, “Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes,” Earth Planet. Sci. Lett. 102, 413–429 (1991).

    Article  Google Scholar 

  65. C. Jaupart and J. C. Mareschal, “The thermal structure and thickness of continental roots,“ Lithos 48, 93–114 (1999).

    Article  Google Scholar 

  66. C. Jaupart and J. C. Mareschal, Heat Generation and Transport in the Earth (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  67. C. Jaupart, and J.–C.Mareschal, “Post–orogenic thermal evolution of newborn Archean continents,” Earth Planet. Sci. Lett. 432, 36–45 (2015).

    Article  Google Scholar 

  68. C. Jaupart, J.-C. Mareschal, H. Bouquerel, and C. Phaneuf, “The building and stabilization of an Archean Craton in the Superior Province, Canada, from a heat flow perspective,” J. Geophys. Res. Solid Earth 119, 9130–9155 (2014).

    Article  Google Scholar 

  69. C. Jaupart, S. Labrosse, F. Lucazeau, and J. C. Mareschal, “Temperatures, heat and energy in the mantle of the Earth,” Treatise on Geophysics, Vol. 7. The Mantle, Ed. by D. Bercovici, (Elsevier, New York, 2015), pp. 223–270.

  70. C. Jaupart, J.-C. Mareschal, and L. Iarotsky, “Radiogenic heat production in the continental crust,” Lithos 262, 398–427 (2016).

    Article  Google Scholar 

  71. M. Jull and P. B. Kelemen, “On the conditions for lower crustal convective instability,” J. Geophys. Res. Solid Earth 106, 6423–6446 (2001).

    Article  Google Scholar 

  72. B. S. Kamber, “The evolving nature of terrestrial crust in the Hadean, through the Archean, into the Proterozoic,” Precamb. Res. 115, 48–82 (2015).

    Article  Google Scholar 

  73. Y. Kaneko, and T. Miyano, “Contact metamorphism by the Bushveld complex in the northeastern Transvaal, South Africa, J. Mineral. Petrol. Econ. Geol. 85, 66–81 (1990).

    Article  Google Scholar 

  74. J. L. Kavanagh, T. Menand, and R. S. J. Sparks, “An experimental investigation of sill formation and propagation in layered elastic media,” Earth Planet. Sci. Lett. 245, 799–813 (2006).

    Article  Google Scholar 

  75. R. Kay and S. Mahlburg-Kay, “Creation and destruction of lower continental crust,” Geol. Rundsch. 80, 259–278 (1991).

    Article  Google Scholar 

  76. P. Kelemen, K. Hanghoj, and A. Greene, “One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust,” Treatise on Geochemistry. Volume 4. The Crust, 2nd Edition, Ed. by R. L. Rudnick, (Elsevier-Permagon, Oxford, 2014), pp. 749–805.

  77. E. M. Kgaswane, A. A. Nyblade, R. J. Durrheim, J. Julia, P. H. Dirks, and S. J. Webb, “Shear wave velocity structure of the Bushveld Complex, South Africa,” Tectonophysics 554, 83–104 (2012).

    Article  Google Scholar 

  78. D. Kohlstedt, B. Evans, S. Mackwell, et al., “Strength of the lithosphere: constraints imposed by laboratory experiments,” J. Geophys. Res. 100, 17–587 (1995).

    Article  Google Scholar 

  79. I. Kukkonen and S. Peltoniemi, “Relationships between thermal and other petrophysical properties of rocks in Finland,” Phys. Earth Planet. Inter. 23, 341–349 (1998).

    Google Scholar 

  80. N. J. Kusznir and R. G. Park, “Intraplate lithosphere deformation and the strength of the lithosphere,” Geophys. J. Int. 79, 513–538 (1984).

    Article  Google Scholar 

  81. G. Laske G. Masters, Z. Ma, and M. Pasyanos, “Update on CRUST1.0 - A 1-degree global model of Earth’s crust,” EGU General Assembly Conference Abstracts, (EGU, Vienna, 2013), vol. 15 , pp. EGU2013–2658 (2013).

  82. R. Latypov, Basal reversals in mafic sills and layered intrusions, Layered Intrusions (Springer, 2015), pp. 259–293.

    Google Scholar 

  83. C.-T. Lee, A. D. Morton, R. W. Kistler, and A. K. Baird, “Petrology and tectonics of phanerozoic continent formation: from island arcs to accretion and continental arc magmatism,” Earth Planet. Sci. Lett. 263, 370–387 (2007).

    Article  Google Scholar 

  84. J. K. Lee, W. I. S. Williams, and D. J. Ellis, “Pb, U and Th diffusion in natural zircon,” Nature 390, 159–162 (1997).

    Article  Google Scholar 

  85. S. Letts, T. H. Torsvik, S. J. Webb, and L. D. Ashwal, “Palaeomagnetism of the 2054 Ma Bushveld Complex (South Africa): implications for emplacement and cooling,” Geophys. J. Int. 179 (2), 850–872 (2009).

    Article  Google Scholar 

  86. J. R. Lister and R. C. Kerr, “The propagation of two-dimensional and axisymmetric viscous gravity currents at a fluid interface,” J. Fluid Mech. 203, 215–249 (1989).

    Article  Google Scholar 

  87. J. R. Lister, “Buoyancy-driven fluid fracture: the effects of material toughness and of low-viscosity precursors,” J. Fluid Mech. 210, 263–280 (1990).

    Article  Google Scholar 

  88. J. Ludden, C. Hubert, and C. Gariepy, “The tectonic evolution of the Abitibi greenstone belt of Canada,” Geol. Mag. 123, 153–166 (1986).

    Article  Google Scholar 

  89. J. C. Mareschal and C. Jaupart, “Variations of surface heat flow and lithospheric thermal structure beneath the North American craton,” Earth Planet. Sci. Lett. 223, 65–77 (2004).

    Article  Google Scholar 

  90. J. Mareschal, “Thermal regime and post–orogenic extension in collision belts,” Tectonophys. 238, 471–484 (1994).

    Article  Google Scholar 

  91. J.-C. Mareschal and C. Jaupart, “Radiogenic heat production, thermal regime and evolution of continental crust,” Tectonophysics 609, 524–534 (2013).

    Article  Google Scholar 

  92. T. Masterlark, M. Haney, H. Dickinson, T. Fournier, and C. Searcy, “Rheologic and structural controls on the deformation of Okmok volcano, Alaska: FEMs, InSAR, and ambient noise tomography,” J. Geophys. Res. Solid Earth 115, B02409 (2010).

    Article  Google Scholar 

  93. D. McKenzie, “The initiation of trenches: a finite amplitude instability,” Island Arcs, Deep Sea Trenches and Back–Arc Basins, Ed. by M. Talwani and W. Pitman (Maurice Ewing Ser. American Geophysical Union, Washington, DC., 1977), vol. 1, pp. 57–61.

    Google Scholar 

  94. S. M. McLennan and S. R. Taylor, “Heat flow and the chemical composition of continental crust,” J. Geol. 104, 377–396 (1996).

    Article  Google Scholar 

  95. C. Meriaux, J. R. Lister, V. Lyakhovsky, and A. Agnon, “Dyke propagation with distributed damage of the host rock,” Earth Planet. Sci. Lett. 165, 177–185 (1999).

    Article  Google Scholar 

  96. K. Mezger, S. Bohlen, and G. N. Hanson, “Metamorphic history of the Archean Pikwitonei granulite domain and the Cross Lake subprovince, Superior Province, Manitoba, Canada,” J. Petrol. 32, 483–517 (1990).

    Article  Google Scholar 

  97. C. Michaut and C. Jaupart, “Two models for the formation of magma reservoirs by small increments,” Tectonophysics 500 (1), 34–49 (2011).

    Article  Google Scholar 

  98. C. Michaut, C. Jaupart, and D. R. Bell, “Transient geotherms in Archean continental lithosphere: New constraints on thickness and heat production of the subcontinental lithospheric mantle,” J. Geophys. Res. Solid Earth 112, 4408 (2007).

    Article  Google Scholar 

  99. W. D. Mooney, G. Laske, and T. Guy Masters, “Crust 5.1: A global crustal model at 5° × 5°,” J. Geophys. Res. Solid Earth 103, 727–748 (1998).

    Article  Google Scholar 

  100. P. Morgan, “Crustal radiogenic heat production and the selective survival of ancient continental crust,” J. Geophys. Res. Solid Earth 90, C561–C570 (1985).

    Article  Google Scholar 

  101. D. Moser, E. L. M. Heaman, T. E., Krogh, and J. A. Hanes, “Intracrustal extension of an Archean orogen revealed using single-grain U-Pb zircon geochronology,” Tectonics 15, 1093–1109 (1996).

    Article  Google Scholar 

  102. G. Musacchio, D. J. White, I. Asudeh, and C. J. Thomson, “Lithospheric structure and composition of the Archean western Superior Province from seismic refraction/wide-angle reflection and gravity modeling,” J. Geophys. Res. Solid Earth 109 (B18), 3304 (2004).

    Article  Google Scholar 

  103. A. V. Newman, T. H. Dixon, G. I. Ofoegbu, and J. E. Dixon, “Geodetic and seismic constraints on recent activity at Long Valley Caldera, California: evidence for viscoelastic rheology,” J. Volcanol. Geotherm. Res. 105, 183–206 (2001).

    Article  Google Scholar 

  104. T. Nguuri, J. Gore, D. James, S. Webb, C. Wright, T. Zengeni, O. Gwavava, and J. Snoke, “Crustal structure beneath southern africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons,” Geophys. Res. Lett. 28 (13), 2501–2504 (2001).

    Article  Google Scholar 

  105. P. Olson, E. Reynolds, L. Hinnov, and A. Goswami, “Variation of ocean sediment thickness with crustal age,” Geochem., Geophys., Geosyst. 17, 1349–1369 (2016).

    Article  Google Scholar 

  106. B. Parsons and F. M. Richter, “A relation between the driving force and geoid anomaly associated with mid-ocean ridges,” Earth Planet. Sci. Lett. 51, 445–450 (1980).

    Article  Google Scholar 

  107. J. A. Percival, M. Sanborn-Barrie, T. Skulski, G. Stott, M. Helmstaedt, and D. J. White, “Tectonic evolution of the western Superior Province from NATMAP and Lithoprobe studies,” Can. J. Earth Sci. 43, 1085–1117 (2006).

    Article  Google Scholar 

  108. J. Percival, T. Skulski, M. Sanborn–Barrie, G. Stott, A. D. Leclair, M. Corkery, and M. Boily, “Geology and tectonic evolution of the Superior Province, Canada,” Tectonic Styles in Canada: The Lithoprobe Perspective, Ed. by J. Percival, F. Cook, and R. Clowes, Spec. Pap. Geol. Ass. Canada 49, 321–378 (2012).

    Google Scholar 

  109. H. K. Perry, C. C. Jaupart, J. C. Mareschal, and G. Bienfait, “Crustal heat production in the Superior Province, Canadian Shield, and in North America inferred from heat flow data,” J. Geophys. Res. Solid Earth 111, B04401 (2006).

    Google Scholar 

  110. H. K. C. Perry, C. Jaupart, J.-C. Mareschal, and N. M. Shapiro, “Upper mantle velocity–temperature conversion and composition determined from seismic refraction and heat flow,” J. Geophys. Res. Solid Earth 111, B07301 (2006).

    Google Scholar 

  111. N. Petford and K. Gallagher, “Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma,” Earth Planet. Sci. Lett. 193, 483–499 (2001).

    Article  Google Scholar 

  112. F. Podmore and A. Wilson, “A reappraisal of the structure, geology and emplacement of the Great Dyke, Zimbabwe,” Mafic Dyke Swarms, Geol. Assoc. Canada, Spec. Pap. 34, 317–330 (1987).

    Google Scholar 

  113. A. Poliakov, P. Cundall, Y. Podladchikov, and V. Lyakhovsky, “An explicit inertial method for the simulation of viscoelastic flow: an evaluation of elastic effects on diapiric flow in two–and three–layers models,” Flow and Creep in the Solar System: Observations, Modeling and Theory (Springer, 1993), pp. 175–195.

    Google Scholar 

  114. H. N. Pollack and D. S. Chapman, “On the regional variation of heat flow, geotherms and thickness of the lithosphere,” Tectonophys. 38, 279–296 (1977).

    Article  Google Scholar 

  115. B. G. Polyak and Y. B. Smirnov, “Relationship between terrestrial heat flow and tectonics of the continents,” Geotectonics 4, 205–213 (1968).

    Google Scholar 

  116. G. Ranalli and D. C. Murphy, “Rheological stratification of the lithosphere,” Tectonophysics 132 (4), 281–295 (1987).

    Article  Google Scholar 

  117. G. Ranalli, Rheology of the Earth, 2nd Edition (Chapman Hall, London, 1995).

    Google Scholar 

  118. A. Reymer and G. Schubert, “Phanerozoic addition rates to the continental crust and crustal growth,” Tectonics 3, 63–77 (1984).

    Article  Google Scholar 

  119. E. Rivalta, M. Bottinger, and T. Dahm, “Buoyancy-driven fracture ascent: experiments in layered gelatin,” J. Volcanol. Geotherm. Res. 144, 273–285 (2005).

    Article  Google Scholar 

  120. A. Roman, and C. Jaupart, “The fate of mafic and ultramafic intrusions in the continental crust,” Earth Planet. Sci. Lett. 453, 131–140 (2016).

    Article  Google Scholar 

  121. A. Roman and C. Jaupart, “Postemplacement dynamics of basaltic intrusions in the continental crust. J. Geophys. Res. Solid Earth 122, 966–987 (2017).

    Article  Google Scholar 

  122. A. Roman, “Emplacement and Post-Emplacement Dynamics of Magma Reservoirs, Ph.D. Thesis (Institut de Physique du Globe, Paris, 2015).

  123. R. L. Rudnick, “Making continental crust,” Nature 378, 571–578 (1995).

    Article  Google Scholar 

  124. R. Rudnick, and S. Gao, “The composition of the continental crust,” Treatise on Geochemistry, 2nd Edition, H. D. Holland, and K. K. Turekian, (Elsevier, Oxford, 2014), pp. 1–51. URL https://www.sciencedirect.com/science/article/pii/B9780080959757003016

  125. E. Sawyer, “Formation and evolution of granite magmas during crustal reworking: the significance of diatexites,” J. Petrol. 39, 1147–1167 (1998).

    Article  Google Scholar 

  126. D. Schutt and C. Lesher, “The effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite,” J. Geophys. Res. Solid Earth 111, B05401 (2006). doi 10.1029/2003JB002950

    Article  Google Scholar 

  127. N. M. Shapiro, D. V. Droznin, S. Y. Droznina, S. L. Senyukov, A. A. Gusev, and E. I. Gordeev, “Deep and shallow long–period volcanic seismicity linked by fluid–pressure transfer,” Nature Geosci. 10, 442–445 (2017).

    Article  Google Scholar 

  128. T. Sisson, K. Ratajeski, W. Hankins, and A. Glazner, “Voluminous granitic magmas from common basaltic sources,” Contrib. Mineral. Petrol. 148 (6), 635–661 (2005).

    Article  Google Scholar 

  129. T. W. Sisson, T. L. Grove, and D. S. Coleman, “Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholiths,” Contrib. Mineral. Petrol. 126, 81–108 (1996).

    Article  Google Scholar 

  130. T. Slagstad, “Radiogenic heat production of Archean to Permian geological provinces in Norway,” Norw. J. Geol. 88, 149–166 (2008).

    Google Scholar 

  131. S. Sol, C. J. Thomson, J.-M. Kendall, D. White, and J. C. Vandecar, I. Asudeh, and B. Roberts, “Seismic tomographic images of the cratonic upper mantle beneath the Western Superior Province of the Canadian Shield–a remnant Archean slab?” Phys. Earth Planet. Inter. 134, 53–69 (2002).

    Article  Google Scholar 

  132. M. V. Stasiuk, C. Jaupart, and R. S. J. Sparks, “On the variations of flow rate in non-explosive lava eruptions,” Earth Planet. Sci. Lett. 114, 505–516 (1993).

    Article  Google Scholar 

  133. M. Stein and Z. Ben-Avraham, “The mechanism of continental crustal growth,” Treatise on Geophysics, 2nd Ed., Ed. by G. Schubert, (Elsevier, Oxford, 2015), pp. 173–199. URL https://www.sciencedirect.com/science/ article/pii/B9780444538024001597

    Google Scholar 

  134. B. Taisne and C. Jaupart, “Dike propagation through layered rocks,” J. Geophys. Res. Solid Earth (1978–2012) 114 (B9), (2009).

  135. Y. Tatsumi, “Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantle I component in the mantle,” Geochem. Geophys. Geosyst. 1 (12), (2000). https://doi.org/10.1029/2000GC000094

  136. Y. Tatsumi, and T. Kogiso, “The subduction factory: its role in the evolution of the earth’s crust and mantle,” Geol. Soc. London, Spec. Publ. 219 (1), 55–80 (2003).

    Article  Google Scholar 

  137. Y. Tatsumi, M. Sakuyama, H. Fukuyama, and I. Kushiro, “Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones,” J. Geophys. Res. Solid Earth 88 (B7), 5815–5825 (1985). URL https://agupubs.onlinelibrary.wiley.com/doi/ abs/10.1029/JB088iB07p05815

    Article  Google Scholar 

  138. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, 1995).

    Google Scholar 

  139. T. Thordarson, and S. Self, “The Laki (Skaftar Fires) and Grlmsvotn eruptions,” Bull. Volcanol. 55, 233–263 (1993).

    Article  Google Scholar 

  140. Y. S. Touloukian and C. Y. Ho, Physical Properties of Rocks and Minerals (McGraw-Hill, New York. 1981).

    Google Scholar 

  141. B.Tucholke, J.-C. Sibuet, et al., Shipboard scientific party, “Site 1276,” Proc. ODP, Init. Repts. 210, 1–358 (2004).

  142. L. R. Wager and G. M. Brown, Layered Igneous Rocks. (Oliver and Boyd, Edinburgh–London, 1968).

    Google Scholar 

  143. S. J. Webb, L. D. Ashwal, and R. G. Cawthorn, “Continuity between Eastern and Western Bushveld Complex, South Africa, confirmed by xenoliths from kimberlite,” Contrib. Mineral. Petrol. 162 (1), 101–107 (2011).

    Article  Google Scholar 

  144. D. J. White, G. Musacchio, H. H. Helmstaedt, R. M. Harrap, P. C. Thurston, A. van der Velden, and K. Hall, “Images of a lower–crustal oceanic slab: direct evidence for tectonic accretion in the Archean western Superior province,” Geology 31, 997–1000 (2003).

    Article  Google Scholar 

  145. A. Wilson, “The great dyke of Zimbabwe,” Developments in Petrology 15, 365–402 (1996).

    Article  Google Scholar 

  146. M. A. Yudovskaya, A. J. Naldrett, J. A. Woolfe, G. Costin, and J. A. Kinnaird, “Reverse compositional zoning in the Uitkomst chromitites as an indication of crystallization in a magmatic conduit,” J. Petrol. 56 (12), 2373–2394 (2015).

    Article  Google Scholar 

  147. S. Zhou and M. Sandiford, “On the stability of isostatically compensated mountain belts,” J. Geophys. Res. Solid Earth 97, 14207–14221 (1992).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Claude Jaupart is grateful to E. Galimov, S. Shilobreeva, O. Timonina and the members of the Vernadsky Institute for a most fruitful, scientifically productive and enjoyable stay at the Vernadsky Institute, Moscow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Jaupart.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claude Jaupart, Mareschal, JC. & Roman, A. The Formation of Continental Crust from a Physics Perspective. Geochem. Int. 56, 1289–1321 (2018). https://doi.org/10.1134/S0016702918130049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918130049

Keywords:

Navigation