Skip to main content
Log in

Numerical experiments on localization in frictional materials

Numerische Simulation der Lokalisierung in reibungsbehaftetem Material

  • Originals
  • Published:
Ingenieur-Archiv Aims and scope Submit manuscript

Summary

Two types of numerical experiment are performed in order to elucidate the nature of localization in a frictional material. In the first type, a continuum calculation is done with a strain-hardening constitutive model. Localization is shown to occur when the value of the strength parameter has a random distribution in space. In the second type of numerical experiment, the distinct element method is used to conduct a shear test on a simulated sample of 1000 disks. Localization is seen to occur: measurements are made of shear band thickness, distribution of particle spins, contact forces and stress components.

übersicht

Zwei Arten von numerischer Simulation zur AufklÄrung der Natur von Lokalisierungen in reibungsbehaftetem Material werden durchgespielt. Im ersten Fall wird eine kontinuumsmechanische Rechnung mit einem verfestigenden Materialverhalten vorgenommen. Es wird gezeigt, da\ Lokalisierung auftritt, wenn der Grenzreibwert rÄumlich eine Zufallsverteilung besitzt. Im zweiten Fall wird eine Methode mit diskreten Elementen benutzt und mit einer durch 1000 Scheiben simulierten Probe ein Scherversuch durchgeführt. Auch hier tritt Lokalisierung auf: Messungen der Scherzonendicke, der KontaktkrÄfte und der gemittelten Spannungen werden angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rudnicki, J. W.; Rice, J. R.: Conditions for the localization of the deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23 (1975) 371–394

    Google Scholar 

  2. Vardoulakis, I.: Shear band inclination and shear modulus of sand in biaxial tests. Int. J. Numer. Anal. Methods Geomech. 4 (1980) 103–119

    Google Scholar 

  3. Vermeer, P. A.: A simple shear-band analysis using compliances. In: Vermeer, P. A.; Luger, H. J. (eds.) Deformation and failure of granular materials. Proc. IUTAM conference deformation and failure of gra- nular materials, Delft, pp. 493–499. Rotterdam: Balkema 1982

    Google Scholar 

  4. Ortiz, M.; Leroy, Y.; Needleman, A.: A finite element method for localized failure analysis. Comput. Methods Appl. Mech. Eng. 61 (1987) 189–214

    Google Scholar 

  5. de Borst, R.: Bifurcations in finite element models with a non-associated flow law. Int. J. Numer. Anal. Methods Geomech. 12 (1988) 99–116

    Google Scholar 

  6. Mühlhaus, H.-B.; Vardoulakis, I.: The thickness of shear bands in granular materials. Géotechnique 37 (1987) 271–283

    Google Scholar 

  7. Cundall, P. A.; Board, M.: A microcomputer program for modelling large-strain plasticity problems. In: Swoboda, C. (ed.) Numerical methods in geomechanics. Proc. 6th Int. Conf. on numer. meth. in geomechanics, Innsbruck, pp. 2101–2108. Rotterdam: Balkema 1988

    Google Scholar 

  8. Otter, J. R. H.; Cassell, A. O.; Hobbs, R. E.: Dynamic relaxation. Proc. Inst. Civ. Eng. 35 (1966) 633–656

    Google Scholar 

  9. Cundall, P. A.: Distinct element models of rock and soil structure. In: Brown, E. T. (ed.) Analytical and computational methods in engineering rock mechanics, pp. 129–163. London: Allen & Unwin 1986

    Google Scholar 

  10. Vermeer, P. A.; de Borst, R.: Non-associated plasticity for soils, concrete and rock. Heron 29 (1984) 1–64

    Google Scholar 

  11. Cundall, P. A.; Strack, O. D. L.: A discrete numerical model for granular assemblies. Géotechnique 29 (1979) 47–65

    Google Scholar 

  12. Cundall, P. A.: Computer simulations of dense sphere assemblies. In: Satake, M.; Jenkins, J. T. (eds.) Micromechanics of granular material. Proc. U.S.-Japan Seminar, Sendai/Zao (1988, in press)

  13. Mindlin, R. D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16 (1949) 259–268

    Google Scholar 

  14. Cundall, P. A.: Formulation of a three-dimensional distinct element model — Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 25 (1988) 107–116

    Google Scholar 

  15. Hart, R. J.; Cundall, P. A.; Lemos, J.: Formulation of a three-dimensional distinct element model — Part II. Mechanical calculations and interaction of a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 25 (1988) 117–125

    Google Scholar 

  16. Strack, O. D. L.: Cundall, P. A.: The distinct element method as a tool for research in granular media, Part II. Report to National Science Foundation concerning NSF Grant ENG76–20711. Dept. of Civil and Mineral Eng., Univ. of Minnesota (1978)

  17. Vardoulakis, I.; Graf, B.: Imperfection sensitivity of the biaxial test on dry sand. In: Vermeer, P. A.; Luger, H. J. (eds.) Deformation and failure of granular materials. Proc. IUTAM conf. deformation and failure of granular materials, Delft, pp. 485–491. Rotterdam: Balkema 1982

    Google Scholar 

  18. Vardoulakis, I.: Shear-banding and liquefaction in granular materials on the basis of a Casserat continuum theory. Ing. Arch. 59 (1989) 106–113

    Google Scholar 

  19. Wilkins, M. L.: Fundamental methods in hydrodynamics. In: Alder, B.; Fernbach, S.; Rotenberg, M. (eds.) Methods in computational physics, Vol. 3, pp. 211–263. New York: Academic Press 1964

    Google Scholar 

  20. Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.: On numerically accurate finite element solutions in the fully plastic range. Comput. Methods Appl. Mech. Eng. 4 (1974) 153–177

    Google Scholar 

  21. Marti, J.; Cundall, P.: Mixed discretization procedure for accurate modelling of plastic collapse. Int. J. Numer. Anal. Methods Geomech. 6 (1982) 129–139

    Google Scholar 

  22. Lin, M.: Analytical and numerical solutions in limit load plasticity problems. MSc thesis in Civil Eng., Univ. of Minnesota (1987)

  23. Triantafyllidis, N.; Aifantis, E. C.: A gradient approach to localization of deformation, I. Hyperelastic materials. J. Elasticity 16 (1986) 225–237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cundall, P.A. Numerical experiments on localization in frictional materials. Ing. arch 59, 148–159 (1989). https://doi.org/10.1007/BF00538368

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00538368

Keywords

Navigation