Skip to main content
Log in

Creation and destruction of lower continental crust

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Die Gesamtzusammenfassung der Kontinentalen Kruste resultiert aus dem Massenaustausch zwischen Kruste und Mantel. Krustenzuwachs erfolgt hauptsächlich beim Aufstieg in und durch die Kruste von aus dem Mantel abstammenden Basalt an konvergierenden Plattengrenzen und zum geringeren Teil Plattenintern. Der Krustenabbau wird erreicht per Subduktion der obersten Kruste, durch subkrustale Erosion an konvergierenden Plattengrenzen (Sedimente, Elemente kontinentaler Herkunft von hydrothermal veränderter ozeanischer Kruste). Dies wird hervorgerufen von der Schichtspaltung der untersten Kruste nach der Verdichtung durch die Gabbro-Eklogit-Phasentransformation, welche in der Krusten-Mantel-Dichte-Inversion resultiert. Da die Phasentransformation nur unter hohen Drücken stattfindet, werden tektonische Mächtigkeitszunahmen der Kruste (> 50 km) benötigt. Die unterste Kruste in Bereichen von konvergierenden Kontinent-Ozean und Kontinent-Kontinent Plattengrenzen unterliegt einer größeren Wahrscheinlichkeit vorübergehende Mächtigkeitszunahmen zu erfahren als platteninterne Kruste. Dementsprechend ist die Erhaltungswahrscheinlichkeit von mafischer unterer Kruste für platteninterne Bereiche größer als für Plattengrenzen. Schichtspaltung von mafischer unterer Kruste ist der Hauptprozeß basisch zusammengesetzte Gesteine aus der Kruste zu entfernen, hierbei wird die Kruste in Richtung »andesitische« Zusammensetzung verändert. Hinweise für Schichtspaltung der unteren Kruste stammen von »geochemisch bilanzierten« Profilen aus druckhaft deformierten Zonen. Weiterhin sprechen dafür hohe La/Yb-Werte, das Fehlen von Eu-Anomalien und hohe Sr-Gehalte, wie sie an der Basis tektonisch verdickter Kruste in Magmen, die aus der tiefen Kruste stammen, gefunden werden. Diese krustalen Magmen werden häufig von Mantelbasalten begleitet, die zu Krustenhebung und Dehnung in Verbindung stehen; beides im Zusammenhang stehend zu der gleichzeitig stattfindenden Schichtspaltung der unterlagernden Mantellithosphäre.

Abstract

Bulk continental crustal composition results from the net mass exchange between crust and mantle. Crustal addition is mainly by the rise of mantle-derived melts into and through the crust at convergent plate margins and (at a lower rate) within plate interiors. Crustal subtraction occurs by subduction of uppermost crust (sediment, continent-derived elements in hydrothermally altered oceanic crust), by subcrustal erosion at convergent margins and by delamination of lowermost crust following densifying gabbro-eclogite phase transformations that result in a crust-mantle density inversion. As the phase transformations only occur at high pressure, tectonic overthickening of the crust (to > 50 km) is required. The lowermost crust at continent-ocean and continent-continent convergent plate margins is more likely to experience these transient overthickening events (compressional orogenies) than is intraplate crust. Correspondingly, the preservation probability of mafic lower crust is greater for intraplate than for plate margin localities. Delamination of mafic lower crust is the main process for removing basic composition rocks from the crust, thereby creating »andesitic« crustal composition. Evidence for lower crustal delamination comes from »geochemically balanced« cross section of compressional belts, and from the high La/Yb ratios, lack of Eu anomalies, and high Sr contents in deep crustallyderived magmas from the base of tectonically over-thickened crust. These crustal magmas are often accompanied by mantle-derived basalts associated with crustal uplift and extension, both related to the coincident delamination of underlying mantle lithosphere.

Résumé

La composition d'ensemble de la croûte continentale résulte des échanges entre la croûte et le manteau. L'apport dans la croûte provient en ordre principal de la montée de basalte d'origine mantélique qui s'opère aux bordures des plaques convergentes et, dans une moindre mesure, à l'intérieur des plaques. Le départ hors de la croûte se produit par la subduction de la croûte supérieure (sédiments, éléments dérivés des continents dans la croûte océanique affectée d'altération hydrothermale), par érosion subcrustale le long des marges convergentes et par délamination à la base de la croûte, les transformations de phase gabbro-éclogitiques entraînant une augmentation de densité et une inversion de densité entre croûte et manteau. Comme ces transformations de phases ne se produisent qu'à haute pression, elles impliquent un épaississement tectonique de la croûte (jusqu'à plus de 50 Km). Le domaine probable de tels épaississement est la partie inférieure de la croûte en bordure des plaques convergentes continentocéan ou continent-continent (orogènes de compression), plutôt que la croûte intra-plaque. Inversement, la probabilité de conversion d'une croûte inférieure mafique est plus élevée au milieu des plaques que sur leurs bordures. La délamination de la croûte inférieure est le processus courant d'appauvrissement de la croûte en roches mafiques, avec création d'une composition crustale »andésitique«. Les arguments en faveur de cette delamination sub-crustale sont tirés de profils »géochimiquement équilibrés« dans les ceintures en compression, ainsi que des rapports La/Yb élevés, de l'absence d'anomalie de l'Eu et des hautes teneurs en Sr dans les magmas dérivés de la partie profonde des croûtes tectoniquement épaissies. Ces magmas crustaux sont souvent accompagnés de basaltes d'origine mantélique associés à un soulèvement et à une extension crustale, ces deux processus étant liés à la délamination concommittante de la lithosphère mantélique sousjacente.

Краткое содержание

Общий состав материк овой коры есть резуль тат обмена массами между Земной корой и мантией. Утолщение ко ры наблюдается гл. обр. при поднятии база льтов мантии в кору, которое идет по грани цам сближающихся пли т и значительно реже че рез породы самих плит. Утончение коры проис ходит при засасывани и верхней ее части, при э розии сходящихся гра ниц плит (отложения, элеме нты материкового происхождения, но гид ротермально изменен ной океанической коры). Эт о вызывается расщеплением нижней части коры после упло тнения в результате преобра зования габброэклог итовых фаз. Этот последний пр оцесс развивается только п ри особенно высоком удавлении, а это давле ние появляется при тектоническом утолщении мощности к оры (более 50км). В нижней части кор ы в регионе границ сходящихся материко вых (океанических и ма териковых) материковых плит про исходит, по всей вероятности, вре менное значительное утолщение мощности этих плитбо лыпее, чем таковое центриальных регион ов плит. Причем мафическая нижняя ча сть коры в центральны х регионах сохраняетс я лучше, чем на граница х плит. Расщепление сло ев мафической нижней части коры является о сновным процессом, удаляющим из нее поро ды базического соста ва, что приводит к измене нию этой части коры в сторону »андезитно го« состава. Указания на расщепление слоев нижней части коры наблюдают из геохими чески сбалансирован ных профилей зон, деформи рованных под воздействием давлен ия. Кроме того, высокое значение соотношения лантала /итербия, отсутствие аномалий европия и высокое сод ержание стронция, установлен ное в магме у базиса тектонически утолщенной Земной коры, которое, вероятн о пришло из глубинных слоев, говорят о справ едливости сказанног о. Эти магмы коры часто с опровождаются базал ьтовыми магмами, связанными с поднятиеми и расширениями. Оба на званных процесса в свою очередь развива ются одновременно с расщеплением глубин ных слоев подлежащей литосферы мантии.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allègre, C. J. &Turcotte, D. L. (1986): Implications of a two component marble cake mantle.- Nature,323, 123–127.

    Google Scholar 

  • Arculus, R. J., Ferguson, J., Chappell, W., Smith, D., McCulloch, M. T., Jackson, I., Hensel, H. D., Taylor, S. R., Knutson, J. &Gust, D. A. (1987): Eclogites and granulites in the lower continental crust: Examples from eastern Australia and southwestern. U.S.A. - In: Eclogites and Rocks, D. C. Smith (ed.), Elsevier, NY. Eclogite Facies pp 335–386.

    Google Scholar 

  • Armstrong, R. L. (1968): A model for the evolution of strontium and lead isotopes in a dynamic earth. - Rev. Geophys.,6, 175–200.

    Google Scholar 

  • Bird, P. (1979): Continental delamination and the Colorado Plateau. - Jour. Geophys. Res.84, 7561–7571.

    Google Scholar 

  • Bohlen, S. &Metzger, K. (1989): Origin of granulite terranes and the formation of the lowermost continental crust. - Science,244, 326–329.

    Google Scholar 

  • Butler, R. W. H. (1986): Thrust tectonics, deep structure and crustal subduction in the Alps and Himalayas. - Jour. Geol. Soc. Lond.,143, 857–873.

    Google Scholar 

  • Byers, F. M. (1961): Petrology of three volcanic suites, Umnak and Bogoslof Islands, Aleutian Islands. - Alaska-Geol. Soc. Amer. Bull.,72, 93–128.

    Google Scholar 

  • Carroll, M. R. &Wyllie, P. J (1989): Experimental phase relations in the system tonalite-peridotite-H2O at 15 kb; implications for assimilation and differentiation processes near the crust-mantle boundary. - Jour. Petrol.,30, 1351–1382.

    Google Scholar 

  • Conrad, W. K. &Kay, R. W. (1984): Ultramafic and mafic inclusions from Adak Island: crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian Arc. - Jour. Petrol.,25, 88–125.

    Google Scholar 

  • —,Kay, S. Mahlburg &Kay, R. W. (1983): Magma mixing in the Aleutian arc; Evidence from cognate inclusions and composite xenoliths. - Journ. Volcan. Geotherm. Res.,18, 279–295.

    Google Scholar 

  • Crawford, A. J., Falloon, T. J. &Green, D. H. (1989): Classification, petrogenesis, and tectonic setting of boninites. - Boninites and Related Rocks, 1–44, A. J. Crawford (ed.) Unwin Hyman, London.

    Google Scholar 

  • Debari, S., Kay, S. Mahlburg &Kay, R. W. (1987): Ultramafic xenoliths from Adagdak Volcano, Adak, Aleutian Islands, Alaska: Deformed igneous cumulates from the Moho of an island arc. - Jour. Geol.,95, 329–341.

    Google Scholar 

  • Defant, M. J. &Drummond, M. S. (1990): Derivation of some modern arc magmas by melting of young subducted crust. - Nature,347, 662–665.

    Google Scholar 

  • Dodge, F. C. W., Lockwood, J. P. &Calk, L. C. (1988): Fragments of the mantle and crust from beneath the Sierra Nevada batholith: xenoliths in a volcanic pipe near Big Creek, California. - Geol. Soc. Amer. Bull.,100, 938–947.

    Google Scholar 

  • Duncan, R. A. &Green, D. H. (1980): Role of multistage melting in the formation of oceanic crust.- Geol.,8, 22–26.

    Google Scholar 

  • Ellam, R. M. &Hawkesworth, C. J. (1988): Is average continental crust generated at subduction zones?- Geol.,16, 314–317.

    Google Scholar 

  • England, P. &Houseman, G. (1989): Extension during continental covergence, with application to the Tibetan Plateau. - Jour. Geophys. Res.,94, 17, 561–17, 579.

    Google Scholar 

  • Fraii, T. &Scarfe, C. M. (1985): Compositions of liquids coexisting with spinel Iherzolite at 10 kbar and the genesis of MORBs. - Contrib. Mineral. Petrol.,90, 18–28.

    Google Scholar 

  • Green, D. H., (1976): Experimental testing of »equilibrium« partial melting of peridotite under water-saturated high-pressure conditions. - Canad. Mineral.,14, 255–268.

    Google Scholar 

  • Griffin, W. L. &O'Reilly, S. Y. (1987): Is the continental Moho the crust-mantle boundary? - Geol.,15, 241–244.

    Google Scholar 

  • Gromet, L. P. &Silver, L. (1987): REE variations across the Peninsular Ranges Batholith: implications for batholithic petrogenesis and crustal growth in magmatic arcs. - Jour. Petrol.,28, 75–125.

    Google Scholar 

  • Gurnis, M. (1989): Large-scale mantle convection and the aggregation and dispersal of supercontinents. - Nature,332, 695–699.

    Google Scholar 

  • Gust, D. A. &Perfit, M. R. (1987): Phase relations of a high-Mg basalt from the Aleutian island arc: implications for primary island arc basalts and high-Al basalts. - Contrib. Mineral. and Petrol.,97, 7–18.

    Google Scholar 

  • Hawkesworth, C. J., Kempton, P. D., Rogers, N. W., Ellam, R. M. &van Calsteren, P. W. (1990): Continental mantle lithosphere, and shallow level enrichment processes in the Earth's mantle. - Earth. Planet. Sci. Lett.,26, 256–268.

    Google Scholar 

  • Herzberg, C. T., Fyfe, W. S. &Carr, M. J. (1983): Density constraints of the formation of the continental Moho and crust. - Contrib. Mineral. Petrol.,84, 1–5.

    Google Scholar 

  • Hildreth, W. &Moorbath, S. (1988): Crustal contributions to arc magmatism in the Andes of Central Chile.- Contrib. Mineral. Petrol.,98, 455–489.

    Google Scholar 

  • Houseman, G., McKenzie, D. &Molnar, P. (1981): Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. - Jour. Geophys. Res.,86, 6115–6132.

    Google Scholar 

  • Huppert, H. E. &Sparks, R. S. J. (1988): The generation of granitic magmas by intrusion of basalt into continental crust. - Jour. Petrol.,29, 599–624.

    Google Scholar 

  • Isacks, B. L. (1988): Uplift of the central Andean plateau and bending of the Bolivian orocline. - Jour. Geophys. Res.,93, 3211–3231.

    Google Scholar 

  • Jahn, B. M., Glikson, A. Y., Peucat, J. J. &Hickman, A. H. (1981): REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution. - Geochim. et Cosmochim. Acta.,45, 1633–1652.

    Google Scholar 

  • Jordan, T. E. (1988): Structure and formation of the continental tectosphere. - J. Petrol. Spec. Vol. 7, 11–38.

    Google Scholar 

  • Kay, R. W. (1978): Aleutian magnesian andesites: melts from subducted Pacific ocean crust. - Jour. Vol. Geotherm. Res.,4, 117–132.

    Google Scholar 

  • — (1980): Volcanic arc magma genesis: Implications for element recycling in the crust-upper mantle system.- Jour. Geol.,88, 497–522.

    Google Scholar 

  • — &Kay, S. Mahlburg (1986): Petrology and geochemistry of the lower continental crust. An overview. - Geol. Soc. Lond. Spec. Publ.,24, 147–159.

    Google Scholar 

  • — — (1988): Crustal recycling and the Aleutian Arc. - Geochim. et Cosmochim. Acta,52, 1351–1359.

    Google Scholar 

  • —,Rubenston, J. L. &Kay, S. Mahlburg (1986): Aleutian terranes from ND isotopes. - Nature,322, 605–609.

    Google Scholar 

  • Kay, S. Mahlburg &Kay, R. W. (1985a): Role of crystal cumulates and the oceanic crust in the formation of the lower crust of the Aleutian arc. - Geology,13, 461–464.

    Google Scholar 

  • — — (1985b): Aleutian tholeiitic and calc-alkaline magma series I: The mafic phenocrysts. - Contrib. Mineral. Petrol.,90, 276–290.

    Google Scholar 

  • —,Maksaev, V., Mpodozis, C, Moscoso, R. &Nasi, C. (1987): Probing the evolving Andean lithosphere: Mid-late Tertiary magmatism in Chile 29°–30° 30'S over the modern zone of subhorizontal subduction. - Jour. Geophys. Res.,92, 6173–6189.

    Google Scholar 

  • —, —,,Moscoso, D., Nasi, C. &Gordillo, C. E. (1988): Tertiary Andean magmatism in Chile and Argentina between 28–33°S: Correlation of magmatic chemistry with an changing Benioff zone. - J. South. Am. Earth Sci.,1, 21–38.

    Google Scholar 

  • —,Ramos, V. A., Mpodozis, C. &Sruoga, P. (1989): Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: Analogy to the Middle Proterozoic in North America? - Geology,17, 324–328.

    Google Scholar 

  • -,Kay, R. W.,Citron, G. P. &Perfit, M. (1990a): Plutonism in an oceanic island arc: The Aleutian Arc, Alaska. - In: Kay, S. Mahlburg and Rapela, C. W. (eds.), Plutonism from Antarctica to Alaska, Geol. Soc. Amer. Spec. Pap.241, 233–255.

  • —,Coira, B. &Viramonte, J. (1990b): Basalt to high-Mg andesite chemistry as a guide to the mantle and the significance of a seismic gap in the Southern Argentine Puna of the Central Andes. - (abstr.), EOS Trans. Amer. Geophys. Union.71, 1719.

    Google Scholar 

  • - &Kay, R. W. (1991a): Aleutian Magmas in Space and Time. - Decade of North American Geology, (in press).

  • -,Mpodozis, C,Ramos, V. A. &Munizaga, F., (1991b): Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the Central Andes (28–33°S). - In: Andean Magmatism and Tectonics (ed.) R. Harmon and C. Rapela.

  • Kröner, A. (1985): Precambrian plate tectonics. - In: Kröner (ed.). - Precambrian Plate Tectonics, 57–90, Elsevier, Amsterdam.

    Google Scholar 

  • Kushiro, I. (1982): Density of tholeiite and alkali basalt magmas at high pressures. - Annual Rep. Director Geophys. Lab. Washington Yearbook,81, 305–309.

    Google Scholar 

  • Laubscher, H. (1988): Material balance in Alpine orogeny. - Geol. Soc. Amer. Bull.,100, 1313–1328.

    Google Scholar 

  • Lonsdale, P. (1988): Paleogene history of the Kula plate: offshore evidence and onshore implications. - Geol. Soc. Amer. Bull., 733–754.

  • Lopez-Escobar, L. Frey, F. A. &Vergara, M. (1977): Andesites and high-alumina basalts from the central-south Chile High Andes: Geochemical evidence bearing on their petrogenesis. - Contrib. Mineral. Petrol.,63, 199–228.

    Google Scholar 

  • Martin, H. (1986): Effect of steeper Archean goethermal gradient on geochemistry of subduction-zone magmas. - Geology,14, 753–756.

    Google Scholar 

  • — (1987): Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry. - Jour. Petrol.,28, 921–953.

    Google Scholar 

  • McKenzie, D. &O'Nions, R. K. (1983): Mantle reservoirs and oceanic island basalts. - Nature,230, 42–43.

    Google Scholar 

  • — &Bickle, M. J. (1988): The volume and composition of melt generated by extension of the lithosphere. - Jour. Petrol.,29, 625–679.

    Google Scholar 

  • McLennan, S. M. (1988): Recycling of the continental crust. - Pageoph.,128, 684–724.

    Google Scholar 

  • Meissner, R. (1986): The Continental Crust, A Geophysical Approach. - International Geophysics Series,34, Academic Press, New York, 426 p.

    Google Scholar 

  • Molnar, P., Gray, D. (1979): Subduction of continental lithosphere: some constraints and uncertainties.- Geology,7, 58–62.

    Google Scholar 

  • Nelson, K. D. (1991): A unified view of craton evolution motivated by recent deep seismic reflection and refraction results.- Geophys. Jour. Int.105, 25–36.

    Google Scholar 

  • O'Nions, R. K. &Oxburgh, E. R. (1988): Helium, volitile fluxes and the development of continental crust.- Earth. Planet. Sci. Lett.,90, 331–347.

    Google Scholar 

  • O'Reilly, S. V. &Griffin, W. L. (1985): A xenolith-derived geotherm for southeastern Australia and its geophysical implications. -Tectonophysics.,111, 41–63.

    Google Scholar 

  • Oxburgh, E. R. (1972): Flake tectonics and continental collision. - Nature,239, 202–204.

    Google Scholar 

  • Parsons, B. (1979): Rates of formation and subduction of oceanic crust. - Geophys. Jour. Roy, Astr. Soc,67, 437–448.

    Google Scholar 

  • Pearce, J. A.,Lippard, S. J. &Roberts, S. (1984): Characteristics and tectonic significance of supra-subduction zone ophiolites. - In: Marginal Basin Geology, Geol. Soc. Lond. Spec. Publ. 16, 77–94, B. P. Kokelaar and M. F. Howells (eds.).

  • — &Houjun, M. (1988): Volcanic rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud.- Phil. Trans. R. Soc. Lond. - A327, 169–201.

    Google Scholar 

  • Rapp, R. P. (1990): Vapor-absent partial melting of amphibolite/eclogite at 8–32 kbar: Implications for the origin and growth of the continental crust. - Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 316 p.

    Google Scholar 

  • Ribe, N. (1988): Dynamical geochemistry of the Hawaiian plume. - Earth Planet. Sci. Lett.,88, 37–46.

    Google Scholar 

  • Richardson, S. W. &England, P. C. (1979): Metamorphic consequences of crustal eclogite production in overthrust orogenic zones. - Earth Planet. Sci. Lett.,42, 183–190.

    Google Scholar 

  • Richter, F. (1985): Models for the Archean thermal regime. - Earth Planet. Sci. Lett.,73, 350–360.

    Google Scholar 

  • Rogers, G. &Saunders, A. D. (1989): Magnesian andesites from Mexico, Chile and the Aleutian Islands: Implications for magmatism associated with ridge-trench collisions. - In: Boninites and Related Rocks, 417–442, A. J. Crawford (ed.) Unwin Hyman, London.

    Google Scholar 

  • Romick, J. D., Kay, S. Mahlburg &Kay, R. W. (1987): Amphibole fractionation and magma mixing in andesites and dacites from the Central Aleutians, Alaska. - EOS, Abstracts with Programs,68, 461.

    Google Scholar 

  • Ronov, A. &Yaroshevski, A. (1969): Composition of the earth's crust. - Amer. Geophys. Union Monogr.,13, 35–37. Earth's Crust and Upper Mantle, P. Hart (ed.), Washington, D.C.

  • Rutherford, M. J. &Devine, J. (1988): The May 18, 1980, eruption of Mount St. Helens 3. Stability and chemistry of amphibole in the magma chamber. - Jour. Geophys. Res.,93, p. 11,949–11,959.

    Google Scholar 

  • Rutter, M. J. &Wyllie, P. J. (1988): Melting of vaporabsent tonalite at 10 kbar to simulate dehydration-melting in the deep crust. - Nature,331, 159–160.

    Google Scholar 

  • Saleeby, J. (1990): Progress in tectonic and petrogenetic studies in an exposed cross-section of young (≈ 100 ma) continental crust, southern Sierra Nevada, California. - In: Exposed Sections of Continental Crust, M. Salisbury (ed.) NATO-ASI series C,317, 137–158.

  • Salters, V. &Hart, S. (1989): The hafnium paradox and the role of garnet in the source of mid-ocean ridge basalts. - Nature,342, 420–422.

    Google Scholar 

  • Saunders, A. D., Rogers, G., Marriner, G. F., Terrell, D. J. &Verma, S. P. (1987): Geochemistry of Cenozoic volcanic rocks, Baja California, Mexico: Implications for the petrogenesis of post-subductions magmas.- Jour. Volcanol. and Geotherm. Res.,32, 223–245.

    Google Scholar 

  • Schulze, D. (1989): Constraints on the abundance of eclogite in the upper mantle. - Jour. Geophys. Res.,94, 4205–4212.

    Google Scholar 

  • Soller, D. R., Ray, R. D. &Brown, R. D. (1982): A new global crustal thickness map.-Tectonics,1, 125–149.

    Google Scholar 

  • Stern, C. R., Futa, K. &Muehlenbachs, K. (1984): Isotope and trace element data for orogenic andesites from the Austral Andes. - In: Andean Magmatism: Chemical and Isotopic Constraints: 31–46, R. Harmon and B. Barreiro (eds.). Shiva, Cheshire, U. K.

    Google Scholar 

  • Stern, R., Hanson, G. &Shirey, S. (1989): Petrogenesis of mantle-derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in the southwestern Superior Province. - Can. Jour. of Earth Sci.,26, 1688–1712.

    Google Scholar 

  • Sun, S. S., Nesbitt, R. W. &McCulloch, M. T. (1989): Geochemistry and petrogenesis of Archean and early Proterozoic siliceous high-magnesian basalts. - In: Boninites and Related Rocks, 148–173. A. J. Crawford (ed.) Unwin Hyman, London.

    Google Scholar 

  • Tatsumi, Y. (1981): Melting experiments on a high-magnesian andesite. -Earth. Planet. Sci. Lett.,54, 357–365.

    Google Scholar 

  • — (1982): Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures. - Earth Planet. Sci. Lett.,60, 305–317.

    Google Scholar 

  • — &Ishizaka, K. (1982): Origin of high magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics. - Earth. Planet. Sci. Lett.,60, 293–304.

    Google Scholar 

  • Thompson, R. N. (1987): Phase equilibria constraints on the genesis and magmatic evolution of oceanic basalts. - Earth. Sci. Rec.24, 161–211.

    Google Scholar 

  • Thorkelson, D. J. &Taylor, R. P. (1989): Cordilleran slab windows. - Geology,17, 833–836.

    Google Scholar 

  • Thorpe, R. S., Francis, P. W. &Moorbath, S. (1979): Rare earth and strontium isotope evidence concerning the petrogenesis of north Chilean ignimbrites. - Earth Planet. Sci. Lett.,42, 359–367.

    Google Scholar 

  • Turcotte, D. L. (1989): Dynamics of recycling. - In: Crust-Mantle Recycling at Convergence Zones,258, 245–258. S. R. Hart and L. Giilen (eds.), NATO ASI Series, Kleuwer (Dordrecht).

    Google Scholar 

  • Umino, S. &Kushiro, I. (1989): Experimental studies on boninite petrogenesis. - In: Boninites and Related Rocks, 89–111, A. J. Crawford (ed.), Unwin Hyman London.

    Google Scholar 

  • Veiser, J. &Jansen, S. L. (1985): Basement and sedimentary recycling-2: time dimension to global tectonics.- J. Geology,93, 625–643.

    Google Scholar 

  • von Huene, R. &Scholl, D. W. (1991): Observations concerning sediment subduction and subduction erosion, and the growth of continental crust at convergent ocean margins. - Rev. Geophys. (in press).

  • Weaver, B. L. &Tarney, J., (1984): Major and trace element composition of the continental lithosphere.- Phys. Chem. Earth,15, 39–68.

    Google Scholar 

  • Wedepohl, K. H. (1990): Chemical fractionation in the continental crust. (abstr.) - Crustal Dymanics Pathways, and Records, Terra abstracts,2, 50.

    Google Scholar 

  • Wood, B. J. (1988): Computation of multiphase equilibrium. - Rev. in Mineral.,17, 71–95. Min. Soc. of America, Washington, D. C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kay, R.W., Mahlburg-Kay, S. Creation and destruction of lower continental crust. Geol Rundsch 80, 259–278 (1991). https://doi.org/10.1007/BF01829365

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01829365

Keywords

Navigation