Skip to main content

Advertisement

Log in

Microbial synthesis of biodiesel and its prospects

  • Problems and Prospects
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

An analytical review of the current data on the microbial synthesis of biodiesel and prospects of its usage is presented. The technological, biochemical, and genetic aspects of biodiesel production using microorganisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC:

acetyl-CoA-carboxylase

ACL:

ATP-dependent citrate lyase

ACO:

aconitase

ACP:

acylcarrying protein

ACS:

acyl-CoA synthetase

atfA :

gene encoding CoA-dependent nonspecific diacylglycerol acyltransferase WS/DGAT

AMP:

adenosine monophosphate

CiC:

mitochondrial citrate transporter

DGAT:

diacylglycerol acyltransferase

DHAP:

dihydroxyacetone phosphate

fadD :

gene encoding acyl-CoA synthetase of E. coli

fadE :

gene encoding acyl-CoA dehydrogenase of E. coli

FAS:

complex fatty acid synthetase

FAT:

acyl-ACP thioesterase

GPD1:

glycerol-3-phosphate dehydrogenase

GUT2:

glycerol-3 phosphate dehydrogenase/glycerol kinase

malE:

gene encoding ME in mold fungi Mucor circinelloides and Mortierella alpina

MAT:

malonyl—CoA: acyl-carrying protein—transatsilaza

ME:

NADPH-dependent malate dehydrogenase (malic enzyme)

Mig1:

regulatory protein involved in glucose repression

NADPH:

reduced nicotinamide adenine dinucleotide

ODC:

mitochondrial malate and oxaloacetate transporter

PAP:

phosphatidate acyltransferase

POX:

acyl-CoA oxidase

PyC:

mitochondrial pyruvate transporter

SCT:

lysophos-phatidate acyltransferase

SLC:

glycerol 3-phosphate acyltransferase

STA:

ADP-glucose pyrophosphorylase

tesA :

gene encoding acyl-ACP thioesterase of E. coli

TGL:

triacylglyceride acylhydrolase

WS/DGAT:

nonspecific CoA-dependent diacylglycerol acyltransferase of Gram-negative bacteria Acinetobacter baylyi

References

  1. Atadashi, I.M., Aroua, M.K., and Abdul Aziz, A., High quality biodiesel and its diesel engine application: a review, Renewable Sustainable Energy Rev., 2010, vol. 14, pp. 1999–2008.

    Article  CAS  Google Scholar 

  2. Sharma, Y.C., Singh, B., and Upadhyay, S.N., Advancements in development and characterization of biodiesel: a review, Fuel, 2008, vol. 87, pp. 2355–2373.

    Article  CAS  Google Scholar 

  3. Norueira, L.A.H., Does biodiesel make sense?, Energy, 2011, vol. 36, pp. 3659–3666.

    Article  Google Scholar 

  4. Hama, S. and Kondo, A., Enzymatic biodiesel production: an overview of potential feedstocks and process development, Biores. Technol., 2012, vol. 135, pp. 386–395.

    Article  Google Scholar 

  5. Kalscheuer, R., Stolting, T., and Steinbuchel, A., Microdiesel: Escherichia coli engineered for fuel production, Microbiology, 2006, vol. 152, pp. 2529–2536.

    Article  CAS  PubMed  Google Scholar 

  6. Ranganathan, S.V., Narasimhan, S.L., and Muthukumar, K., An overview of enzymatic production of biodiesel, Biores. Technol., 2008, vol. 99, no. 10, pp. 3975–3981.

    Article  CAS  Google Scholar 

  7. Fjerbaek, L., Christensen, K.V., and Norddahl, B., A review of the current state of biodiesel production using enzymatic transesterification, Biotechnol. Bioeng., 2009, vol. 102, no. 5, pp. 1298–1315.

    Article  CAS  PubMed  Google Scholar 

  8. Al-Zuhair, S., Sulaimen, A.-Z., Asma, A., Iman, J., Maryam, A., Noura, A., and Suaad, M., Enzymatic production of biodiesel from used/waste vegetable oils: design of a pilot plant, Renewable Energy, 2011, vol. 36, pp. 2605–2614.

    Article  CAS  Google Scholar 

  9. Sotoft, L.F., Rong, B.G., Crhistensen, K.V., and Norddahl, B., Process simulation and economical evaluation of enzymatic biodiesel production plant, Bioresour, Technol., 2010, vol. 101, no. 14, pp. 5266–5274.

    Article  CAS  Google Scholar 

  10. Azocar, L., Ciudad, G., Heipieper, H.J., and Navia, R., Biotechnological processes for biodiesel production using alternative oils, Appl. Microbiol. Biotechnol., 2010, vol. 88, no. 3, pp. 621–636.

    Article  CAS  PubMed  Google Scholar 

  11. Park, E.Y., Sato, M., and Kojima, S., Lipase-catalyzed biodiesel production from waste activated bleaching earth as raw material in a pilot plant, Biores. Technol., 2008, vol. 99, no. 8, pp. 3130–3135.

    Article  CAS  Google Scholar 

  12. Cheirsilp, B. and Luhasakul, Y., Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel, Biores. Technol., 2013, vol. 143C, pp. 329–337.

    Article  Google Scholar 

  13. Juszcayk, P., Tomaszewskaa, L., Kitab, A., and Rymowicz, W., Biomass production by novel strains of Yarrowia lipolytica using raw glycerol, derived from biodiesel production, Biores. Technol., 2013, vol. 137, pp. 124–131.

    Article  Google Scholar 

  14. Li, Q., Du, W., and Liu, D., Perspectives of microbial oils for biodiesel production, Appl. Microbiol. Biotechnol., 2008, vol. 80, no. 5, pp. 749–756.

    Article  CAS  PubMed  Google Scholar 

  15. Liang, M.H. and Jiang, J.G., Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology, Prog. Lipid Res., 2013, vol. 52, no. 4, pp. 395–408.

    Article  CAS  PubMed  Google Scholar 

  16. Halim, R., Danquah, M.K., and Webley, P.A., Extraction of oil from microalgae for biodesel production: a review, Biotechnol. Adv., 2012, vol. 30, no. 3, pp. 709–732.

    Article  CAS  PubMed  Google Scholar 

  17. R. P. Mercer and Armenta, E., Developments in oil extraction from microalgae, Eur. J. Lipid Sci. Technol., 2011, vol. 113, no. 5, pp. 539–547.

    Article  CAS  Google Scholar 

  18. Uduman, N., Qi, Y., Danquah, M.K., and Hoadley, A.F.A., Marine microalgae flocculation and focused beam reflectance measurement, Chem. Eng. J., 2010, vol. 162, pp. 935–940.

    Article  CAS  Google Scholar 

  19. Bauer, F.F., Govender, P., and Bester, M.C., Yeast flocculation and its biotechnological relevance, Appl. Microbiol. Biotechnol., 2010, vol. 88, no. 1, pp. 31–39.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, X.Q. and Bai, F.W., Yeast flocculation: new story in fuel ethanol production, Biotechnol. Adv., 2009, vol. 27, no. 6, pp. 849–856.

    Article  CAS  PubMed  Google Scholar 

  21. Vallejo, J.A., Sanchez-Perez, A., Martinez, J.P., and Villa, T.G., Cell aggregations in yeasts and their applications, Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 6, pp. 2305–2318.

    Article  CAS  PubMed  Google Scholar 

  22. Cid, V.J., Sanchez, M., and Nombela, C., Characterization of thermosensitive autolytic mutants from diploid Saccharomyces cerevisiae, Arch. Microbiol., 1994, vol. 140, no. 3, pp. 559–568.

    Article  CAS  Google Scholar 

  23. Alexqandar, I., San Segundo, P., Venkov, P., Del Rey, F., and Vazquez de Aldana, C.R., Characterization of a Saccharomyces cerevisiae thermosensitive lytic mutant leads to the identification of a new allele of the NUD1 gene, Int. J. Biochem. Cell Biol., 2004, vol. 35, no. 11, pp. 2196–2213.

    Article  Google Scholar 

  24. Wijffels, R.H. and Barbosa, M.J., An outlook on microalgal biofuels, Science, 2010, vol. 329, no. 5993, pp. 796–799.

    Article  CAS  PubMed  Google Scholar 

  25. Abou-Shanab, R.A.I., Hwang, J.H., Cho, Y., Min, B., and Jeon, B.H., Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production, Appl. Energy, 2011, vol. 88, pp. 3300–3306.

    Article  CAS  Google Scholar 

  26. Gao, C.F., Zhai, Y., Ding, Y., and Wu, Q.Y., Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides, Appl. Energy, 2010, vol. 87, pp. 756–761.

    Article  CAS  Google Scholar 

  27. Feng, Y., Li, C., and Zhang, D., Lipid production of chlorella vulgaris cultured in artificial wastewater medium, Biores. Technol., 2011, vol. 102, no. 1, pp. 101–105.

    Article  CAS  Google Scholar 

  28. Damiani, M.C., Popovich, C.A., Constenla, D., and Leonardi, P.I., Lipid analysis in haematococcus pluvialis to assess its potential use as a biodiesel feedstock, Bioresour. Technol., 2010, vol. 101, no. 11, pp. 3801–3807.

    Article  CAS  PubMed  Google Scholar 

  29. Li, Y., Horsman, M., Wang, B., Wu, N., and Lan, C.Q., Effects of nitrogen sources on cell growth and lipic accumulation of green alga Neochloris oleoabundans, Appl. Microbiol. Biotechnol., 2008, vol. 81, no. 4, pp. 629–636.

    Article  CAS  PubMed  Google Scholar 

  30. Araujo, G.S., Matos, L.J., Goncalves, L.R., Fernandez, F.A., and Farias, W.R., Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains, Biores. Technol., 2011, vol. 102, no. 8, pp. 5248–5250.

    Article  CAS  Google Scholar 

  31. Rodolfi, L., Chini Zitelli, G., Bassi, N., Padovani, G., Biondi, N., Bionini, G., and Tredici, M.R., Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 2009, vol. 102, no. 1, pp. 100–112.

    Article  CAS  PubMed  Google Scholar 

  32. Cauto, R.M., Simoes, P.C., Reis, A., Da Silva T.L., Martins, V.H., and Sanchez-Vicente, Y., Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii, Eng. Life Sci., 2010, vol. 10, pp. 158–164.

    Google Scholar 

  33. Chiu, S.Y., Kaoa, S.Y., Tsaia, M.T., Onga, S.C., Chenb, C.H., and Lina, C.S., Lipid accumulation and co2 utilization of Nanochloropsis oculata in response to CO2 aeration, Biores. Technol., 2009, vol. 100, no. 2, pp. 833–838.

    Article  CAS  Google Scholar 

  34. Beopoulos, A., Nicaud, J.N., and Gaillardin, C., An overview of lipid metabolism in yeasts and its impact on biotechnological processes, Appl. Microbiol. Biotechnol., 2011, vol. 90, no. 4, pp. 1193–1206.

    Article  CAS  PubMed  Google Scholar 

  35. Ratledge, C. and Wynn, J.P., The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms, Adv. Appl. Microbiol., 2002, vol. 51, pp. 1–51.

    Article  CAS  PubMed  Google Scholar 

  36. Fujimoto, T., Ohsaki, Y., Cheng, J., Suzuki, M., and Shinogara, Y., Lipid droplets: a classic organelle with new outfits, Histochem. Cell Biol., 2008, vol. 130, pp. 263–279.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ratledge, C., Fatty acid biosynthesis in microorganisms being used for single cell oil production, Biochimie, 2004, vol. 86, pp. 807–815.

    Article  CAS  PubMed  Google Scholar 

  38. Robles-Medina, A., Gonzales-Moreno, P.A., and Esteban-Cerdan, L., Biocatalysis: towards ever greener biodiesel production, Biotechnol. Adv., 2009, vol. 27, no. 4, pp. 398–408.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, T. and Khosla, C., Genetic engineering of Escherichia coli for biodfuel production, Ann. Rev. Genet., 2010, vol. 44, pp. 53–69.

    Article  CAS  PubMed  Google Scholar 

  40. Tsigie, Y.A., Wang, C.Y., Truong, C.T., and Ju, Y.H., Lipid production form Yarrowia lipolytica Polg grown in sugarcane bagasse hydrolysate, Biores. Technol., 2011, vol. 102, no. 19, pp. 9216–9222.

    Article  CAS  Google Scholar 

  41. Talebnia, F., Karakashev, D., and Angelidaki, I., Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation, Biores. Technol., 2010, vol. 101, no. 13, pp. 4744–4753.

    Article  CAS  Google Scholar 

  42. Taherzadeh, M.J. and Karimi, K., Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review, Int. J. Mol. Sci., 2008, vol. 9, no. 9, pp. 1621–1651.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Laopaiboon, P., Thani, A., Leelavateharamas, V., and Laopaiboon, L., Acid hydrolysis of sugarcane bagasse for lactic acid production, Biores. Technol., 2010, vol. 101, no. 3, pp. 1036–1043.

    Article  CAS  Google Scholar 

  44. Pugazhvadivu, M. and Jeyachandran, K., Investigations on the performance and exhaust emissions of a diesel engine using preheated waste cooking oil as a fuel, Renew. Energy, 2005, vol. 30, pp. 2189–2202.

    Article  CAS  Google Scholar 

  45. Meesters, P.A.E., Huijberts, G.N.M., and Eggink, G., High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source, Appl. Microbiol. Biotechnol., 1996, vol. 45, pp. 575–579.

    Article  CAS  Google Scholar 

  46. Hoyer, L.L., Green, C.B., Oh, S.H., and Zhao, X., Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit, Med. Mycol., 2008, vol. 46, no. 1, pp. 1–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Li, Y.H., Zhao, Z.B., and Bai, F.W., High-density cultivation of oleaginous yeast Phodosporidium toruloides Y4 in fed-batch culture, Enzyme Microb. Technol., 2007, vol. 41, pp. 312–317.

    Article  Google Scholar 

  48. Zhu, L.Y., Zong, M.H., and Wu, H., Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation, Bioresour. Technol., 2008, vol. 99, no. 16, pp. 7881–7885.

    Article  CAS  PubMed  Google Scholar 

  49. Papanikolaou, S. and Aggelis, G., Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture, Biores. Technol., 2002, vol. 82, no. 1, pp. 43–49.

    Article  CAS  Google Scholar 

  50. Karatay, S.E. and Donmez, G., Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses, Biores. Technol., 2010, vol. 101, no. 20, pp. 7988–7990.

    Article  CAS  Google Scholar 

  51. Papanikolaou, S., Chevalot, I., Komaitis, M., Aggelis, G., and Marc, I., Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats, Antonie van Leeuwenhoek, 2001, vol. 80, no. 3, pp. 215–224.

    Article  CAS  PubMed  Google Scholar 

  52. Yu, X., Zheng, Y., Dorgan, K.M., and Chen, S., Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute dulfuric acid, Biores. Technol., 2011, vol. 102, no. 10, pp. 6134–6140.

    Article  CAS  Google Scholar 

  53. Nelson, D.L. and Cox, M.M., Lenhninger Principles of Biochemistry, 6th ed., New York: Palgrave, 2013.

    Google Scholar 

  54. Yang, C., Hua, Q., and Shimizu, K., Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic lightautotrophic/dark-heterotrophic conditions, Biochem. Eng. J., 2000, vol. 6, pp. 87–102.

    Article  CAS  PubMed  Google Scholar 

  55. Fickers, P., Benetti, P.H., Wache, Y., Marty, A., Mauersberger, S., Smit, M.S., and Nicaud, J.M., Hydrophobic substrate utilization by the yeast Yyarrowia lipolytica, and its potential applications, FEMS Yeast Res., 2005, vol. 5, nos. 6–7, pp. 527–543.

    Article  CAS  PubMed  Google Scholar 

  56. Regoulet, M., Aguilaniu, H., Averet, N., Binoust, O., Camougrand, N., Grandier-Vizielle, X., Larsson, C., Pahlman, I.L., Manon, S., and Gustafsson, L., Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae, Mol. Cell Biochem., 2004, vols. 256–257, nos. 1–2, pp. 73–81.

    Article  Google Scholar 

  57. Larsson, C., Pahlman, I.L., Ansell, R., Rigoulet, M., Adler, L., and Gustafsson, L., The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae, Yeast, 1998, vol. 14, no. 4, pp. 347–357.

    Article  CAS  PubMed  Google Scholar 

  58. Fukuda, R., Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica, Boisci. Biotechnol. Biochem., 2013, vol. 77, no. 6, pp. 1149–1154.

    Article  CAS  Google Scholar 

  59. Tai, M. and Stephanopoulos, G., Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production, Metab. Eng., 2013, vol. 15, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  60. Ruenwai, R., Cheevadhanarak, S., and Laoteng, K., Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha, Mol. Biotechnol., 2009, vol. 42, no. 3, pp. 327–332.

    Article  CAS  PubMed  Google Scholar 

  61. Beopoulos, A., Mrozova, Z., Thevenieau, F., Le Dall, M.T., Hapala, I., Paanikolaou, S., Chardot, T., and Nicaud, J.M., Control of lipid accumulation in the yeast Yarrowia lipolytica, Appl. Environ. Microbiol., 2008, vol. 74, no. 24, pp. 779–7789.

    Article  Google Scholar 

  62. Dulermo, T. and Nicaud, J.M., Involvement of the G3p shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica, Metab. Eng., 2011, vol. 13, no. 5, pp. 482–491.

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Z., Xu, H.M., Wang, G.Y., Chi, Z., and Chi, Z.M., Disruption of the mig1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109, Biochim. Biphys. Acta, 2013, vol. 183, no. 4, pp. 675–682.

    Article  Google Scholar 

  64. Zhang, H., Zhang, L., Chen, H., Chen, Y.Q., Ratledge, C., Song, Y., and w. chen, Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation, Biotechnol. Lett., 2013, vol. 35, no. 12, pp. 2091–2098.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, Y., Adams, I., and Ratledge, C., Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation, Arch. Microbiol., 2007, vol. 153.

  66. Ratledge, C. and Adams, I.P., Regulation of lipid accumulation in oleaginous micro-organisms, Biochem. Soc. Transactions, 2002, vol. 30, no. 6, pp. 1047–1050.

    Article  CAS  Google Scholar 

  67. Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., and Hu, Q., Chlomydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyperaccumulates triacyl-glycerol, Metab. Eng., 2010, vol. 12, no. 4, pp. 387–391.

    Article  PubMed  Google Scholar 

  68. Kalscheuer, R. and Steinbuchel, A., A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1, J. Biol. Chem., 2003, vol. 278, no. 10, pp. 8075–8082.

    Article  CAS  PubMed  Google Scholar 

  69. Stoveken, T., Kalscheuer, R., Malkus, U., Reichelt, R., and Steinbuchel, A., The wax ester synthase/acylcoenzyme A: diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase, J. Bacteriol., 2005, vol. 187, no. 4, pp. 1369–1376.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Elbahloul, Y. and Steinbuchel, A., Pilot-scale production of fatty acid ethyl esters by an engineered Escherichia coli strain harboring the p(Microdiesel) plasmid, Appl. Environ. Microbiol., 2010, vol. 76, no. 13, pp. 4560–4565.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Yu, K.O., Jung, J., Kim, S.W., Park, C.H., and Han, S.O., Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase, Biotechnol. Bioeng., 2012, vol. 109, no. 10, pp. 110–115.

    Article  CAS  PubMed  Google Scholar 

  72. Lu, X., Vora, H., and Khosla, C., Overproduction of free fatty acids in E. coli: implications for biodiesel production, Metab. Eng., 2008, vol. 10, no. 6, pp. 333–339.

    Article  CAS  PubMed  Google Scholar 

  73. Steen, E.J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., Mcclure, A., del Cardayre, S.B., and Keasling, J.D., Microbial production of fatty-acid-derived fuels and chemicals from plant biomass, Nature, 2010, vol. 463, no. 7280, pp. 559–562.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Yuzbasheva.

Additional information

Original Russian Text © E.Yu. Yuzbasheva, T.V. Yuzbashev, E.B. Mostova, N.I. Perkovskaya, S.P. Sineokii, 2014, published in Biotekhnologiya, 2014, No. 2, pp. 8–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuzbasheva, E.Y., Yuzbashev, T.V., Mostova, E.B. et al. Microbial synthesis of biodiesel and its prospects. Appl Biochem Microbiol 50, 789–801 (2014). https://doi.org/10.1134/S0003683814090075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683814090075

Keywords

Navigation