Skip to main content
Log in

Overexpression of Acetyl-CoA Carboxylase Gene of Mucor rouxii Enhanced Fatty Acid Content in Hansenula polymorpha

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Malonyl-CoA is an essential precursor for fatty acid biosynthesis that is generated from the carboxylation of acetyl-CoA. In this work, a gene coding for acetyl-CoA carboxylase (ACC) was isolated from an oleaginous fungus, Mucor rouxii. According to the amino acid sequence homology and the conserved structural organization of the biotin carboxylase, biotin carboxyl carrier protein, and carboxyl transferase domains, the cloned gene was characterized as a multi-domain ACC1 protein. Interestingly, a 40% increase in the total fatty acid content of the non-oleaginous yeast Hansenula polymorpha was achieved by overexpressing the M. rouxii ACC1. This result demonstrated a significant improvement in the production of fatty acids through genetic modification in this yeast strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: Where they are and how they behave. Nature Reviews. Molecular Cell Biology, 9, 112–124. doi:10.1038/nrm2330.

    Article  Google Scholar 

  2. Daum, G., Lees, N. D., Bard, M., & Dickson, R. (1998). Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast (Chichester, England), 14, 1471–1510. doi:10.1002/(SICI)1097-0061(199812)14:16<1471::AID-YEA353>3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  3. Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 51, 1–51. doi:10.1016/S0065-2164(02)51000-5.

    Article  CAS  Google Scholar 

  4. Somashekar, D., Venkateshwaran, G., Sambaiah, K., & Lokesh, B. R. (2003). Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Process Biochemistry, 38, 1719–1724. doi:10.1016/S0032-9592(02)00258-3.

    Article  CAS  Google Scholar 

  5. Neels, J. G., & Olefsky, J. M. (2006). Cell signaling. A new way to burn fat. Science, 312, 1756–1758. doi:10.1126/science.1130476.

    Article  CAS  Google Scholar 

  6. Roesler, K., Shintani, D., Savage, L., Boddupalli, S., & Ohlrogge, J. (1997). Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiology, 113, 75–81. doi:10.1104/pp.113.1.75.

    Article  CAS  Google Scholar 

  7. Davis, M. S., Solbiati, J., & Cronan, J. E., Jr. (2000). Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. The Journal of Biological Chemistry, 275, 28593–28598. doi:10.1074/jbc.M004756200.

    Article  CAS  Google Scholar 

  8. Klaus, D., Ohlrogge, J. B., Neuhaus, H. E., & Dörmann, P. (2004). Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta, 219, 389–396. doi:10.1007/s00425-004-1236-3.

    Article  CAS  Google Scholar 

  9. Bailey, A., Keon, J., Owen, J., & Hargreaves, J. (1995). The ACC1 gene, encoding acetyl CoA carboxylase, is essential for growth in Ustilago maydis. Molecular & General Genetics, 249, 191–201. doi:10.1007/BF00290366.

    Article  CAS  Google Scholar 

  10. Cronan, J. E., Jr., & Waldrop, G. L. (2002). Multi-subunit acetyl-CoA carboxylases. Progress in Lipid Research, 41, 407–435. doi:10.1016/S0163-7827(02)00007-3.

    Article  CAS  Google Scholar 

  11. Sasaki, Y., & Nagano, Y. (2004). Plant acetyl-CoA carboxylase: Structure, biosynthesis, regulation, and gene manipulation for plant breeding. Bioscience, Biotechnology, and Biochemistry, 68, 1175–1184. doi:10.1271/bbb.68.1175.

    Article  CAS  Google Scholar 

  12. Tong, L. (2005). Acetyl-coenzyme A carboxylase: Crucial metabolic enzyme and attractive target for drug discovery. Cellular and Molecular Life Sciences, 62, 1784–1803. doi:10.1007/s00018-005-5121-4.

    Article  CAS  Google Scholar 

  13. Hoja, U., Marthol, S., Hofmann, J., Stegner, S., Schulz, R., Meier, S., et al. (2004). HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 279, 21779–21786. doi:10.1074/jbc.M401071200.

    Article  CAS  Google Scholar 

  14. Barber, M. C., Price, N. T., & Travers, M. T. (2005). Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochimica et Biophysica Acta, 1733, 1–28.

    CAS  Google Scholar 

  15. Wongsumpanchai, W., Anamnart, S., Laoteng, K., & Petsom, A. (2004). Elongation of C16:0 to C18:0 fatty acids in methylotrophic yeast Hansenula polymorpha CBS 1976 and fatty acid auxotrophic mutants. FEMS Microbiology Letters, 237, 213–218.

    CAS  Google Scholar 

  16. Laoteng, K., Ruenwai, R., Tanticharoen, M., & Cheevadhanarak, S. (2005). Genetic modification of essential fatty acids biosynthesis in Hansenula polymorpha. FEMS Microbiology Letters, 245, 169–178. doi:10.1016/j.femsle.2005.03.006.

    Article  CAS  Google Scholar 

  17. Laoteng, K., Anjard, C., Rachadawong, S., Tanticharoen, M., Maresca, B., & Cheevadhanarak, S. (1999). Mucor rouxii Δ9-desaturase gene is transcriptionally regulated during cell growth and by low temperature. Molecular Cell Biology Research Communications, 1, 36–43. doi:10.1006/mcbr.1999.0107.

    Article  CAS  Google Scholar 

  18. Gietl, C., Faber, K. N., van der Klei, I. J., & Veenhuis, M. (1994). Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha. Proceedings of the National Academy of Sciences of the United States of America, 91, 3151–3155. doi:10.1073/pnas.91.8.3151.

    Article  CAS  Google Scholar 

  19. Stearns, T., Ma, H., & Botstein, D. (1990). Manipulating yeast genome using plasmid vectors. Methods in Enzymology, 185, 280–297. doi:10.1016/0076-6879(90)85025-J.

    Article  CAS  Google Scholar 

  20. Lepage, G., & Roy, C. C. (1986). Direct transesterification of all classes of lipids in a one-step reaction. Journal of Lipid Research, 27, 114–120.

    CAS  Google Scholar 

  21. Marchler-Bauer, A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., Gwadz, M., et al. (2007). CDD: A conserved domain database for interactive domain family analysis. Nucleic Acids Research, 35, D237–D240. doi:10.1093/nar/gkl951.

    Article  CAS  Google Scholar 

  22. Shorrosh, B. S., Dixon, R. A., & Ohlrogge, J. B. (1994). Molecular cloning, characterization, and elicitation of acetyl-CoA carboxylase from alfalfa. Proceedings of the National Academy of Sciences of the United States of America, 91, 4323–4327. doi:10.1073/pnas.91.10.4323.

    Article  CAS  Google Scholar 

  23. Pfeifer, B. A., & Khosla, C. (2001). Biosynthesis of polyketides in heterologous hosts. Microbiology and Molecular Biology Reviews, 65, 106–118. doi:10.1128/MMBR.65.1.106-118.2001.

    Article  CAS  Google Scholar 

  24. Al-Feel, W., DeMar, J. C., & Wakil, S. J. (2003). A Saccharomyces cerevisiae mutant strain defective in acetyl-CoA carboxylase arrests at the G2/M phase of the cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 100, 3095–3100. doi:10.1073/pnas.0538069100.

    Article  CAS  Google Scholar 

  25. Kamiryo, T., Nishikawa, Y., Mishina, M., Terao, M., & Numa, S. (1979). Involvement of long-chain acyl coenzyme A for lipid synthesis in repression of acetyl-coenzyme A carboxylase in Candida lipolytica. Proceedings of the National Academy of Sciences of the United States of America, 76, 4390–4394. doi:10.1073/pnas.76.9.4390.

    Article  CAS  Google Scholar 

  26. Wijeyaratne, S. C., Ohta, K., Chavanich, S., Mahamontri, V., Nilubol, N., & Hayashida, S. (1986). Lipid composition of a thermotolerant yeast, Hansenula polymorpha. Agricultural and Biological Chemistry, 50, 827–832.

    CAS  Google Scholar 

  27. Perrière, G., & Gouy, M. (1996). WWW-query: An on-line retrieval system for biological sequence banks. Biochimie, 78, 364–369. doi:10.1016/0300-9084(96)84768-7.

    Article  Google Scholar 

  28. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882. doi:10.1093/nar/25.24.4876.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant (BT-B-02-NG-B5-4905) from National Science and Technology Development Agency, Thailand. Rawisara Ruenwai was supported by the Thailand Graduate Institute of Science and Technology. We thank Prof. Morakot Tanticharoen and Dr. Sansanalak Rachdawong for their helpful comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kobkul Laoteng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruenwai, R., Cheevadhanarak, S. & Laoteng, K. Overexpression of Acetyl-CoA Carboxylase Gene of Mucor rouxii Enhanced Fatty Acid Content in Hansenula polymorpha . Mol Biotechnol 42, 327–332 (2009). https://doi.org/10.1007/s12033-009-9155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9155-y

Keywords

Navigation