Skip to main content

Advertisement

Log in

Obesity and the risk of cardiometabolic diseases

  • Review Article
  • Published:

From Nature Reviews Cardiology

View current issue Sign up to alerts

Abstract

The prevalence of obesity has reached pandemic proportions, and now approximately 25% of adults in Westernized countries have obesity. Recognized as a major health concern, obesity is associated with multiple comorbidities, particularly cardiometabolic disorders. In this Review, we present obesity as an evolutionarily novel condition, summarize the epidemiological evidence on its detrimental cardiometabolic consequences and discuss the major mechanisms involved in the association between obesity and the risk of cardiometabolic diseases. We also examine the role of potential moderators of this association, with evidence for and against the so-called ‘metabolically healthy obesity phenotype’, the ‘fatness but fitness’ paradox or the ‘obesity paradox’. Although maintenance of optimal cardiometabolic status should be a primary goal in individuals with obesity, losing body weight and, particularly, excess visceral adiposity seems to be necessary to minimize the risk of cardiometabolic diseases.

Key points

  • Obesity has reached pandemic proportions, which in turn has led to an increase in the risk of concomitant cardiometabolic conditions.

  • Obesity is an evolutionary mismatch between our ancient, genetically determined physiology and the modern diet and lifestyle; not only did we not evolve to have obesity but we never evolved to cope with its numerous associated maladaptations, such as massive adipocyte hypertrophy to accommodate excess fat.

  • Obesity is associated with both excess quantity and dysfunction of white adipose tissue, particularly visceral adipose depots.

  • ‘Metabolically healthy obesity’ often reflects a transitionary stage to an unhealthy phenotype.

  • Sustained body weight control in individuals with obesity improves their cardiometabolic risk status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The obesity pandemic.
Fig. 2: Evolution of physiological, anatomical and behavioural changes predisposing humans to storing fat.
Fig. 3: Main mechanisms involved in the development of obesity and its effects on cardiometabolic risk status.

Similar content being viewed by others

References

  1. NCD Risk Factor Collaboration Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016).

    Article  Google Scholar 

  2. GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13–27 (2017).

    Article  Google Scholar 

  3. Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. NCHS Data Brief No. 360: Prevalence of obesity and severe obesity among adults: United States, 2017–2018 https://www.cdc.gov/nchs/data/databriefs/db360-h.pdf (2020).

  4. World Health Organization. WHO European Regional Obesity Report 2022. https://apps.who.int/iris/bitstream/handle/10665/353747/9789289057738-eng.pdf (2022).

  5. Templin, T. et al. The overweight and obesity transition from the wealthy to the poor in low- and middle-income countries: a survey of household data from 103 countries. PLoS Med. 16, e1002968 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dai, H. et al. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990-2017: an analysis of the Global Burden of Disease study. PLoS Med. 17, e1003198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388, 776–786 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Santos-Lozano, A. et al. Implications of obesity in exceptional longevity. Ann. Transl. Med. 4, 416 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kivimaki, M. et al. Body-mass index and risk of obesity-related complex multimorbidity: an observational multicohort study. Lancet Diabetes Endocrinol. 10, 253–263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Powell-Wiley, T. M. et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 143, e984–e1010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kivimaki, M. et al. Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health 2, e277–e285 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim, M. S. et al. Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur. Heart J. 42, 3388–3403 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tomiyama, A. J. et al. How and why weight stigma drives the obesity ‘epidemic’ and harms health. BMC Med. 16, 123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Puhl, R. & Suh, Y. Health consequences of weight stigma: implications for obesity prevention and treatment. Curr. Obes. Rep. 4, 182–190 (2015).

    Article  PubMed  Google Scholar 

  15. Phelan, S. M. et al. Impact of weight bias and stigma on quality of care and outcomes for patients with obesity. Obes. Rev. 16, 319–326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ford, N. D., Patel, S. A. & Narayan, K. M. Obesity in low- and middle-income countries: burden, drivers, and emerging challenges. Annu. Rev. Public Health 38, 145–164 (2017).

    Article  PubMed  Google Scholar 

  17. Song, X. et al. Obesity attenuates gender differences in cardiovascular mortality. Cardiovasc. Diabetol. 13, 144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mongraw-Chaffin, M. L., Peters, S. A. E., Huxley, R. R. & Woodward, M. The sex-specific association between BMI and coronary heart disease: a systematic review and meta-analysis of 95 cohorts with 1·2 million participants. Lancet Diabetes Endocrinol. 3, 437–449 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kammerlander, A. A. et al. Sex differences in the associations of visceral adipose tissue and cardiometabolic and cardiovascular disease risk: the framingham heart study. J. Am. Heart Assoc. 10, e019968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. National Research Council. Body Composition in Animals and Man (eds Breidenstein Reid, B. C., Hansard, S. L., Stenaker, H. H. & Zobrisky, S. E.) 45e70 (National Research Council of National Academy of Sciences, 1968).

  21. Speakman, J. R. Evolutionary perspectives on the obesity epidemic: adaptive, maladaptive, and neutral viewpoints. Annu. Rev. Nutr. 33, 289–317 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan, H., Hill, K., Lancaster, J. & Hurtado, A. M. A theory of human life history evolution: diet, intelligence, and longevity. Evolut. Anthropol. 9, 156–185 (2000).

    Article  Google Scholar 

  23. van Raaij, J. M., Schonk, C. M., Vermaat-Miedema, S. H., Peek, M. E. & Hautvast, J. G. Energy cost of lactation, and energy balances of well-nourished Dutch lactating women: reappraisal of the extra energy requirements of lactation. Am. J. Clin. Nutr. 53, 612–619 (1991).

    Article  PubMed  Google Scholar 

  24. Raichlen, D. A. & Lieberman, D. E. The evolution of human step counts and its association with the risk of chronic disease. Curr. Biol. 32, R1206–R1214 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Eaton, S. B., Konner, M. & Shostak, M. Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am. J. Med. 84, 739–749 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Raichlen, D. A. et al. Physical activity patterns and biomarkers of cardiovascular disease risk in hunter-gatherers. Am. J. Hum. Biol. 29, 22919 (2017).

    Article  Google Scholar 

  27. Truswell, A. S. & Hansen, J.D.L. in Kalahari Hunter-Gatherers (ed. Lee, R.B. & DeVore, I.) 166–194 (1976).

  28. Pontzer, H., Wood, B. M. & Raichlen, D. A. Hunter-gatherers as models in public health. Obes. Rev. 19, 24–35 (2018).

    Article  PubMed  Google Scholar 

  29. Johnson, R. J., Lanaspa, M. A. & Fox, J. W. Upper paleolithic figurines showing women with obesity may represent survival symbols of climatic change. Obesity 29, 11–15 (2021).

    Article  PubMed  Google Scholar 

  30. Walker, R. et al. Growth rates and life histories in twenty-two small-scale societies. Am. J. Hum. Biol. 18, 295–311 (2006).

    Article  PubMed  Google Scholar 

  31. Gurven, M., Jaeggi, A. V., Kaplan, H. & Cummings, D. Physical activity and modernization among Bolivian Amerindians. PLoS ONE 8, e55679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lindeberg, S., Nilsson-Ehle, P., Terent, A., Vessby, B. & Schersten, B. Cardiovascular risk factors in a Melanesian population apparently free from stroke and ischaemic heart disease: the Kitava study. J. Intern. Med. 236, 331–340 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Carvalho, J. J. et al. Blood pressure in four remote populations in the INTERSALT study. Hypertension 14, 238–246 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Little, M. A., Galvin, K. & Mugambi, M. Cross-sectional growth of nomadic Turkana pastoralists. Hum. Biol. 55, 811–830 (1983).

    CAS  PubMed  Google Scholar 

  35. Mbalilaki, J. A. et al. Daily energy expenditure and cardiovascular risk in Masai, rural and urban Bantu Tanzanians. Br. J. Sports Med. 44, 121–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Kaplan, H. et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389, 1730–1739 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Carrera-Bastos, P. et al. C-reactive protein in traditional melanesians on Kitava. BMC Cardiovasc. Disord. 20, 524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Floud, R., Fogel, R. W., Harris, B. & Hong, S. K. The Changing Body: Health, Nutrition, and Human Development in the Western World since 1700 (Cambridge Univ. Press, 2011).

  39. Lieberman, D. E. The Story of the Human Body: Evolution, Health and Disease (Pantheon, 2013).

  40. Cypess, A. M. Reassessing human adipose tissue. N. Engl. J. Med. 386, 768–779 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Becher, T. et al. Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 27, 58–65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nabasenja, C., Barry, K., Nelson, T., Chandler, A. & Hewis, J. Imaging individuals with obesity. J. Med. Imaging Radiat. Sci. 53, 291–304 (2022).

    Article  PubMed  Google Scholar 

  43. Neeland, I. J., Yokoo, T., Leinhard, O. D. & Lavie, C. J. 21st century advances in multimodality imaging of obesity for care of the cardiovascular patient. JACC Cardiovasc. Imaging 14, 482–494 (2021).

    Article  PubMed  Google Scholar 

  44. Fox, C. S. et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116, 39–48 (2007).

    Article  PubMed  Google Scholar 

  45. Neeland, I. J. et al. Body fat distribution and incident cardiovascular disease in obese adults. J. Am. Coll. Cardiol. 65, 2150–2151 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Neeland, I. J. et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity 21, E439–E447 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Shah, R. V. et al. Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA Study. JACC Cardiovasc. Imaging 7, 1221–1235 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu, J. et al. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study. J. Clin. Endocrinol. Metab. 95, 5419–5426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Linge, J. et al. Body composition profiling in the UK Biobank imaging study. Obesity 26, 1785–1795 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, J. J., Pedley, A., Hoffmann, U., Massaro, J. M. & Fox, C. S. Association of changes in abdominal fat quantity and quality with incident cardiovascular disease risk factors. J. Am. Coll. Cardiol. 68, 1509–1521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Neeland, I. J., Grundy, S. M., Li, X., Adams-Huet, B. & Vega, G. L. Comparison of visceral fat mass measurement by dual-X-ray absorptiometry and magnetic resonance imaging in a multiethnic cohort: the Dallas Heart Study. Nutr. Diabetes 6, e221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaul, S. et al. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity 20, 1313–1318 (2012).

    Article  PubMed  Google Scholar 

  53. Borga, M. et al. Advanced body composition assessment: from body mass index to body composition profiling. J. Investig. Med. 66, 1–9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schlecht, I. et al. Reproducibility and validity of ultrasound for the measurement of visceral and subcutaneous adipose tissues. Metabolism 63, 1512–1519 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, K. Y. et al. Brown adipose reporting criteria in imaging studies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 24, 210–222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kulterer, O. C. et al. Brown adipose tissue prevalence is lower in obesity but its metabolic activity is intact. Front. Endocrinol. 13, 858417 (2022).

    Article  Google Scholar 

  58. Ruiz, J. R. et al. Role of human brown fat in obesity, metabolism and cardiovascular disease: strategies to turn up the heat. Prog. Cardiovasc. Dis. 61, 232–245 (2018).

    Article  PubMed  Google Scholar 

  59. Sun, L. et al. Brown adipose tissue: multimodality evaluation by PET, MRI, infrared thermography, and whole-body calorimetry (TACTICAL-II). Obesity 27, 1434–1442 (2019).

    Article  PubMed  Google Scholar 

  60. Nirengi, S. et al. An optimal condition for the evaluation of human brown adipose tissue by infrared thermography. PLoS ONE 14, e0220574 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ang, Q. Y. et al. A new method of infrared thermography for quantification of brown adipose tissue activation in healthy adults (TACTICAL): a randomized trial. J. Physiol. Sci. 67, 395–406 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Gustafson, B., Hedjazifar, S., Gogg, S., Hammarstedt, A. & Smith, U. Insulin resistance and impaired adipogenesis. Trends Endocrinol. Metab. 26, 193–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Laforest, S., Labrecque, J., Michaud, A., Cianflone, K. & Tchernof, A. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit. Rev. Clin. Lab. Sci. 52, 301–313 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Ryden, M., Andersson, D. P., Bergstrom, I. B. & Arner, P. Adipose tissue and metabolic alterations: regional differences in fat cell size and number matter, but differently: a cross-sectional study. J. Clin. Endocrinol. Metab. 99, E1870–E1876 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Hoffstedt, J. et al. Regional impact of adipose tissue morphology on the metabolic profile in morbid obesity. Diabetologia 53, 2496–2503 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. McLaughlin, T. et al. Enhanced proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese individuals implicates impaired adipogenesis. Diabetologia 50, 1707–1715 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Abreu-Vieira, G. et al. Cidea improves the metabolic profile through expansion of adipose tissue. Nat. Commun. 6, 7433 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Ahmadian, M. et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557–566 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Hammarstedt, A. et al. WISP2 regulates preadipocyte commitment and PPARgamma activation by BMP4. Proc. Natl Acad. Sci. USA 110, 2563–2568 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gustafson, B., Hammarstedt, A., Hedjazifar, S. & Smith, U. Restricted adipogenesis in hypertrophic obesity: the role of WISP2, WNT, and BMP4. Diabetes 62, 2997–3004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Majithia, A. R. et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc. Natl Acad. Sci. USA 111, 13127–13132 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mozaffarian, D., Hao, T., Rimm, E. B., Willett, W. C. & Hu, F. B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 364, 2392–2404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Virtue, S. & Vidal-Puig, A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochim. Biophys. Acta 1801, 338–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Fano, M. et al. Adipose tissue plasticity in response to pathophysiological cues: a connecting link between obesity and its associated comorbidities. Int. J. Mol. Sci. 23, 5511 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sethi, J. K. Activatin’ human adipose progenitors in obesity. Diabetes 59, 2354–2357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Porter, S. A. et al. Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care 32, 1068–1075 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Neeland, I. J. et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 7, 715–725 (2019).

    Article  PubMed  Google Scholar 

  80. Corvera, S., Solivan-Rivera, J. & Yang Loureiro, Z. Angiogenesis in adipose tissue and obesity. Angiogenesis 25, 439–453 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hammarstedt, A., Gogg, S., Hedjazifar, S., Nerstedt, A. & Smith, U. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol. Rev. 98, 1911–1941 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Imbeault, P. et al. Relationship of visceral adipose tissue to metabolic risk factors for coronary heart disease: is there a contribution of subcutaneous fat cell hypertrophy? Metabolism 48, 355–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Cotillard, A. et al. Adipocyte size threshold matters: link with risk of type 2 diabetes and improved insulin resistance after gastric bypass. J. Clin. Endocrinol. Metab. 99, E1466–E1470 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Landgraf, K. et al. Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children. Diabetes 64, 1249–1261 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Arner, E. et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59, 105–109 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Suarez-Cuenca, J. A. et al. Enlarged adipocytes from subcutaneous vs. visceral adipose tissue differentially contribute to metabolic dysfunction and atherogenic risk of patients with obesity. Sci. Rep. 11, 1831 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Henninger, A. M., Eliasson, B., Jenndahl, L. E. & Hammarstedt, A. Adipocyte hypertrophy, inflammation and fibrosis characterize subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes. PLoS ONE 9, e105262 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rosenquist, K. J. et al. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc. Imaging 6, 762–771 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gealekman, O. et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123, 186–194 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Paavonsalo, S., Hariharan, S., Lackman, M. H. & Karaman, S. Capillary rarefaction in obesity and metabolic diseases-organ-specificity and possible mechanisms. Cells 9, 2683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Spencer, M. et al. Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J. Clin. Endocrinol. Metab. 96, E1990–E1998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pasarica, M. et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58, 718–725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Belligoli, A. et al. Characterization of subcutaneous and omental adipose tissue in patients with obesity and with different degrees of glucose impairment. Sci. Rep. 9, 11333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cao, Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 18, 478–489 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Goossens, G. H. et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124, 67–76 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, M., Hu, T., Zhang, S. & Zhou, L. Associations of different adipose tissue depots with insulin resistance: a systematic review and meta-analysis of observational studies. Sci. Rep. 5, 18495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Neeland, I. J. et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 308, 1150–1159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nicklas, B. J. et al. Visceral adipose tissue cutoffs associated with metabolic risk factors for coronary heart disease in women. Diabetes Care 26, 1413–1420 (2003).

    Article  PubMed  Google Scholar 

  99. Cifarelli, V. et al. Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. J. Clin. Invest. 130, 6688–6699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chait, A. & den Hartigh, L. J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med. 7, 22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Halberg, N. et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell Biol. 29, 4467–4483 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vasamsetti, S. B., Natarajan, N., Sadaf, S., Florentin, J. & Dutta, P. Regulation of cardiovascular health and disease by visceral adipose tissue-derived metabolic hormones. J. Physiol. https://doi.org/10.1113/JP282728 (2022).

    Article  PubMed  Google Scholar 

  103. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Park, H. S., Park, J. Y. & Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res. Clin. Pract. 69, 29–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Valenzuela, P. L. et al. Lifestyle interventions for the prevention and treatment of hypertension. Nat. Rev. Cardiol. 18, 251–275 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat. Rev. Nephrol. 15, 367–385 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chandra, A. et al. The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas Heart Study. J. Am. Coll. Cardiol. 64, 997–1002 (2014).

    Article  PubMed  Google Scholar 

  108. Mirzababaei, A., Mozaffari, H., Shab-Bidar, S., Milajerdi, A. & Djafarian, K. Risk of hypertension among different metabolic phenotypes: a systematic review and meta-analysis of prospective cohort studies. J. Hum. Hypertens. 33, 365–377 (2019).

    Article  PubMed  Google Scholar 

  109. Grassi, G. et al. Sympathetic neural overdrive in the obese and overweight state. Hypertension 74, 349–358 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Kalil, G. Z. & Haynes, W. G. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications. Hypertens. Res. 35, 4–16 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Raheem, J. et al. Visceral adiposity is associated with metabolic profiles predictive of type 2 diabetes and myocardial infarction. Commun. Med. 2, 81 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Parikh, N. I. et al. Visceral and subcutaneous adiposity and brachial artery vasodilator function. Obesity 17, 2054–2059 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Fuster, J. J., Ouchi, N., Gokce, N. & Walsh, K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ. Res. 118, 1786–1807 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Matacchione, G. et al. Senescent macrophages in the human adipose tissue as a source of inflammaging. Geroscience 44, 1941–1960 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Antonopoulos, A. S. & Antoniades, C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J. Physiol. 595, 3907–3917 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nabati, M. et al. Epicardial adipose tissue and its association with cardiovascular risk factors and mitral annular calcium deposits. Ultrasound 27, 217–224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Scarano Pereira, J. P. et al. Epicardial adipose tissue, obesity, and the occurrence of atrial fibrillation: an overview of pathophysiology and treatment methods. Expert. Rev. Cardiovasc. Ther. 20, 307–322 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Packer, M. Disease-treatment interactions in the management of patients with obesity and diabetes who have atrial fibrillation: the potential mediating influence of epicardial adipose tissue. Cardiovasc. Diabetol. 18, 121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wang, T. J. et al. Obesity and the risk of new-onset atrial fibrillation. JAMA 292, 2471–2477 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Packer, M. The epicardial adipose inflammatory triad: coronary atherosclerosis, atrial fibrillation, and heart failure with a preserved ejection fraction. Eur. J. Heart Fail. 20, 1567–1569 (2018).

    Article  PubMed  Google Scholar 

  121. Sinha, S. K. et al. Epicardial adipose tissue thickness and its association with the presence and severity of coronary artery disease in clinical setting: a cross-sectional observational study. J. Clin. Med. Res. 8, 410–419 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. McKenney-Drake, M. L. et al. Epicardial adipose tissue removal potentiates outward remodeling and arrests coronary atherogenesis. Ann. Thorac. Surg. 103, 1622–1630 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Packer, M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J. Am. Coll. Cardiol. 71, 2360–2372 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Ardissino, M. et al. Pericardial adiposity is independently linked to adverse cardiovascular phenotypes: a CMR study of 42 598 UK Biobank participants. Eur. Heart J. Cardiovasc. Imaging 23, 1471–1481 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hachiya, R., Tanaka, M., Itoh, M. & Suganami, T. Molecular mechanism of crosstalk between immune and metabolic systems in metabolic syndrome. Inflamm. Regen. 42, 13 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ito, A. et al. Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue. J. Biol. Chem. 283, 35715–35723 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Kamei, N. et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281, 26602–26614 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lancaster, G. I. et al. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab. 27, 1096–1110.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Suganami, T. et al. Attenuation of obesity-induced adipose tissue inflammation in C3H/HeJ mice carrying a Toll-like receptor 4 mutation. Biochem. Biophys. Res. Commun. 354, 45–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Iwasaki, Y. et al. Activating transcription factor 4 links metabolic stress to interleukin-6 expression in macrophages. Diabetes 63, 152–161 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Swanson, K. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Plomgaard, P. et al. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54, 2939–2945 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Efthymiou, V. & Patti, M. E. It is not just fat: dissecting the heterogeneity of adipose tissue function. Curr. Diab. Rep. 22, 177–187 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Lenz, M., Arts, I. C. W., Peeters, R. L. M., de Kok, T. M. & Ertaylan, G. Adipose tissue in health and disease through the lens of its building blocks. Sci. Rep. 10, 10433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vijay, J. et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat. Metab. 2, 97–109 (2020).

    Article  PubMed  Google Scholar 

  140. Bruno, M. E. C. et al. Accumulation of gammadelta T cells in visceral fat with aging promotes chronic inflammation. Geroscience 44, 1761–1778 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fruhbeck, G. et al. Increased levels of interleukin-36 in obesity and type 2 diabetes fuel adipose tissue inflammation by inducing its own expression and release by adipocytes and macrophages. Front. Immunol. 13, 832185 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, G. et al. Transcriptome of visceral adipose tissue identifies an inflammation-related ceRNA network that regulates obesity. Mol. Cell Biochem. 477, 1095–1106 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Murano, I. et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res. 49, 1562–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Olona, A. et al. Adipoclast: a multinucleated fat-eating macrophage. BMC Biol. 19, 246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Malavazos, A. E. et al. The density of crown-like structures in epicardial adipose tissue could play a role in cardiovascular diseases. Eat. Weight Disord. 27, 2905–2910 (2022).

    Article  PubMed  Google Scholar 

  147. Ichioka, M. et al. Increased expression of macrophage-inducible C-type lectin in adipose tissue of obese mice and humans. Diabetes 60, 819–826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tanaka, M. et al. Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat. Commun. 5, 4982 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Henningsen, J. B. & Scheele, C. Brown adipose tissue: a metabolic regulator in a hypothalamic cross talk? Annu. Rev. Physiol. 83, 279–301 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Carobbio, S., Guenantin, A. C., Samuelson, I., Bahri, M. & Vidal-Puig, A. Brown and beige fat: from molecules to physiology and pathophysiology. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 37–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Carpentier, A. C., Blondin, D. P., Haman, F. & Richard, D. Brown adipose tissue – a translational perspective. Endocr. Rev. https://doi.org/10.1210/endrev/bnac015 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bartelt, A. et al. Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport. Nat. Commun. 8, 15010 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shimizu, I. et al. Vascular rarefaction mediates whitening of brown fat in obesity. J. Clin. Invest. 124, 2099–2112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Herz, C. T. et al. Active brown adipose tissue is associated with a healthier metabolic phenotype in obesity. Diabetes https://doi.org/10.2337/db21-0475 (2021).

    Article  PubMed  Google Scholar 

  155. Wibmer, A. G. et al. Brown adipose tissue is associated with healthier body fat distribution and metabolic benefits independent of regional adiposity. Cell Rep. Med. 2, 100332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Carpentier, A. C. et al. Brown adipose tissue energy metabolism in humans. Front. Endocrinol. 9, 447 (2018).

    Article  Google Scholar 

  157. Berbée, J. F. et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat. Commun. 6, 6356 (2015).

    Article  PubMed  Google Scholar 

  158. Zhang, Q. et al. Differences in the metabolic status of healthy adults with and without active brown adipose tissue. Wien. Klin. Wochenschr. 125, 687–695 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Matsushita, M. et al. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int. J. Obes. 38, 812–817 (2014).

    Article  CAS  Google Scholar 

  160. Global Burden of Metabolic Risk Factors for Chronic Diseases, C. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet 383, 970–983 (2014).

    Article  Google Scholar 

  161. Lu, Y., Hajifathalian, K., Rimm, E. B., Ezzati, M. & Danaei, G. Mediators of the effect of body mass index on coronary heart disease: decomposing direct and indirect effects. Epidemiology 26, 153–162 (2015).

    Article  PubMed  Google Scholar 

  162. Bakhtiyari, M. et al. Contribution of obesity and cardiometabolic risk factors in developing cardiovascular disease: a population-based cohort study. Sci. Rep. 12, 1544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Blüher, M. Metabolically healthy obesity. Endocr. Rev. 41, bnaa004 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Smith, G. I., Mittendorfer, B. & Klein, S. Metabolically healthy obesity: facts and fantasies. J. Clin. Invest. 129, 3978–3989 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ortega, F. B., Lavie, C. J. & Blair, S. N. Obesity and cardiovascular disease. Circ. Res. 118, 1752–1770 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Ortega, F. B. et al. Role of physical activity and fitness in the characterization and prognosis of the metabolically healthy obesity phenotype: a systematic review and meta-analysis. Prog. Cardiovasc. Dis. 61, 190–205 (2018).

    Article  PubMed  Google Scholar 

  167. Martinez-Gomez, D. et al. Physical activity and risk of metabolic phenotypes of obesity: a prospective taiwanese cohort study in more than 200,000 adults. Mayo Clin. Proc. 94, 2209–2219 (2019).

    Article  PubMed  Google Scholar 

  168. Barrea, L. et al. Metabolically healthy obesity (MHO) vs. metabolically unhealthy obesity (MUO) phenotypes in PCOS: association with endocrine-metabolic profile, adherence to the mediterranean diet, and body composition. Nutrients 13, 3925 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tanisawa, K. et al. Association between dietary patterns and different metabolic phenotypes in Japanese adults: WASEDA’S health study. Front. Nutr. 9, 779967 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Slagter, S. N. et al. Dietary patterns and physical activity in the metabolically (un)healthy obese: the Dutch Lifelines cohort study. Nutr. J. 17, 18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Zhang, N., Chen, Y., Guo, X., Sun, G. & Sun, Y. The prevalence and predictors of metabolically healthy obesity in obese rural population of China: a cross-sectional study. Psychol. Health Med. 22, 303–309 (2017).

    Article  PubMed  Google Scholar 

  172. Farabi, S. S., Smith, G. I., Schweitzer, G. G., Stein, R. I. & Klein, S. Do lifestyle factors and quality of life differ in people with metabolically healthy and unhealthy obesity? Int. J. Obes. 46, 1778–1785 (2022).

    Article  CAS  Google Scholar 

  173. Kanagasabai, T., Dhanoa, R., Kuk, J. L. & Ardern, C. I. Association between sleep habits and metabolically healthy obesity in adults: a cross-sectional study. J. Obes. 2017, 5272984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ankita, A., Mehta, B., Dutt, N., Nayak, P. & Sharma, P. Poor sleep and the metabolic derangements associated with obesity in adult males. J. Fam. Med. Prim. Care 11, 2026–2031 (2022).

    Article  Google Scholar 

  175. Brochu, M. et al. What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women? J. Clin. Endocrinol. Metab. 86, 1020–1025 (2001).

    CAS  PubMed  Google Scholar 

  176. Kim, L. J. et al. Associations of visceral and liver fat with the metabolic syndrome across the spectrum of obesity: the AGES-Reykjavik study. Obesity 19, 1265–1271 (2011).

    Article  PubMed  Google Scholar 

  177. Hwang, Y. C. et al. Visceral abdominal fat accumulation predicts the conversion of metabolically healthy obese subjects to an unhealthy phenotype. Int. J. Obes. 39, 1365–1370 (2015).

    Article  CAS  Google Scholar 

  178. Kang, Y. M. et al. Visceral adiposity index predicts the conversion of metabolically healthy obesity to an unhealthy phenotype. PLoS ONE 12, e0179635 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Fabbrini, E. et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl Acad. Sci. USA 106, 15430–15435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Esser, N. et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia 56, 2487–2497 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Karelis, A. D. et al. The metabolically healthy but obese individual presents a favorable inflammation profile. J. Clin. Endocrinol. Metab. 90, 4145–4150 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Phillips, C. M. & Perry, I. J. Does inflammation determine metabolic health status in obese and nonobese adults? J. Clin. Endocrinol. Metab. 98, E1610–E1619 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Eckel, N., Meidtner, K., Kalle-Uhlmann, T., Stefan, N. & Schulze, M. B. Metabolically healthy obesity and cardiovascular events: a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 23, 956–966 (2016).

    Article  PubMed  Google Scholar 

  184. Caleyachetty, R. et al. Metabolically healthy obese and incident cardiovascular disease events among 3.5 million men and women. J. Am. Coll. Cardiol. 70, 1429–1437 (2017).

    Article  PubMed  Google Scholar 

  185. Lassale, C. et al. Separate and combined associations of obesity and metabolic health with coronary heart disease: a pan-European case-cohort analysis. Eur. Heart J. 39, 397–406 (2018).

    Article  PubMed  Google Scholar 

  186. Eckel, N. et al. Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90 257 women (the Nurses’ Health Study): 30 year follow-up from a prospective cohort study. Lancet Diabetes Endocrinol. 6, 714–724 (2018).

    Article  PubMed  Google Scholar 

  187. Lin, L. et al. Transition of metabolic phenotypes and risk of subclinical atherosclerosis according to BMI: a prospective study. Diabetologia 63, 1312–1323 (2020).

    Article  PubMed  Google Scholar 

  188. Abiri, B., Koohi, F., Ebadinejad, A., Valizadeh, M. & Hosseinpanah, F. Transition from metabolically healthy to unhealthy overweight/obesity and risk of cardiovascular disease incidence: a systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 32, 2041–2051 (2022).

    Article  PubMed  Google Scholar 

  189. Hosseinpanah, F. et al. The association between transition from metabolically healthy obesity to metabolic syndrome, and incidence of cardiovascular disease: Tehran lipid and glucose study. PLoS ONE 15, e0239164 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Mongraw-Chaffin, M. et al. Metabolically healthy obesity, transition to metabolic syndrome, and cardiovascular risk. J. Am. Coll. Cardiol. 71, 1857–1865 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ortega, F. B., Ruiz, J. R., Labayen, I., Lavie, C. J. & Blair, S. N. The fat but fit paradox: what we know and don’t know about it. Br. J. Sports Med. 52, 151–153 (2018).

    Article  PubMed  Google Scholar 

  192. Lee, C. D., Blair, S. N. & Jackson, A. S. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am. J. Clin. Nutr. 69, 373–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  193. Tarp, J. et al. Fitness, fatness, and mortality in men and women from the UK Biobank: prospective cohort study. J. Am. Heart Assoc. 10, e019605 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. McAuley, P. A., Kokkinos, P. F., Oliveira, R. B., Emerson, B. T. & Myers, J. N. Obesity paradox and cardiorespiratory fitness in 12,417 male veterans aged 40 to 70 years. Mayo Clin. Proc. 85, 115–121 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Goel, K. et al. Combined effect of cardiorespiratory fitness and adiposity on mortality in patients with coronary artery disease. Am. Heart J. 161, 590–597 (2011).

    Article  PubMed  Google Scholar 

  196. Hemmingsson, E., Vaisanen, D., Andersson, G., Wallin, P. & Ekblom-Bak, E. Combinations of BMI and cardiorespiratory fitness categories: trends between 1995 and 2020 and associations with CVD incidence and mortality and all-cause mortality in 471 216 adults. Eur. J. Prev. Cardiol. 29, 959–967 (2022).

    Article  PubMed  Google Scholar 

  197. Barry, V. W., Caputo, J. L. & Kang, M. The joint association of fitness and fatness on cardiovascular disease mortality: a meta-analysis. Prog. Cardiovasc. Dis. 61, 136–141 (2018).

    Article  PubMed  Google Scholar 

  198. Koolhaas, C. M. et al. Impact of physical activity on the association of overweight and obesity with cardiovascular disease: the Rotterdam study. Eur. J. Prev. Cardiol. 24, 934–941 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Zhang, X., Cash, R. E., Bower, J. K., Focht, B. C. & Paskett, E. D. Physical activity and risk of cardiovascular disease by weight status among U.S adults. PLoS ONE 15, e0232893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Valenzuela, P. L. et al. Joint association of physical activity and body mass index with cardiovascular risk: a nationwide population-based cross-sectional study. Eur. J. Prev. Cardiol. 29, e50–e52 (2022).

    Article  PubMed  Google Scholar 

  201. Li, T. Y. et al. Obesity as compared with physical activity in predicting risk of coronary heart disease in women. Circulation 113, 499–506 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Carlsson, A. C. et al. Physical activity, obesity and risk of cardiovascular disease in middle-aged men during a median of 30 years of follow-up. Eur. J. Prev. Cardiol. 23, 359–365 (2016).

    Article  PubMed  Google Scholar 

  203. Lavie, C. J., De Schutter, A. & Milani, R. V. Healthy obese versus unhealthy lean: the obesity paradox. Nat. Rev. Endocrinol. 11, 55–62 (2015).

    Article  PubMed  Google Scholar 

  204. Elagizi, A. et al. An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog. Cardiovasc. Dis. 61, 142–150 (2018).

    Article  PubMed  Google Scholar 

  205. Sharma, A. et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am. J. Cardiol. 115, 1428–1434 (2015).

    Article  PubMed  Google Scholar 

  206. Niedziela, J. et al. The obesity paradox in acute coronary syndrome: a meta-analysis. Eur. J. Epidemiol. 29, 801–812 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Nitsche, L. J. et al. Exploring the impact of the obesity paradox on lung cancer and other malignancies. Cancers 14, 1440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Li, S. et al. Systematic review of prognostic roles of body mass index for patients undergoing lung cancer surgery: does the ‘obesity paradox’ really exist? Eur. J. Cardiothorac. Surg. 51, 817–828 (2017).

    PubMed  Google Scholar 

  209. Cortellini, A. et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J. Immunother. Cancer 7, 57 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. McQuade, J. L. et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol. 19, 310–322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Shah, R. et al. Body mass index and mortality in acutely decompensated heart failure across the world: a global obesity paradox. J. Am. Coll. Cardiol. 63, 778–785 (2014).

    Article  PubMed  Google Scholar 

  212. Wang, Z. J. et al. Association of body mass index with mortality and cardiovascular events for patients with coronary artery disease: a systematic review and meta-analysis. Heart 101, 1631–1638 (2015).

    Article  CAS  PubMed  Google Scholar 

  213. Iliodromiti, S. et al. The impact of confounding on the associations of different adiposity measures with the incidence of cardiovascular disease: a cohort study of 296 535 adults of white European descent. Eur. Heart J. 39, 1514–1520 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Kokkinos, P. et al. Cardiorespiratory fitness and the paradoxical BMI-mortality risk association in male veterans. Mayo Clin. Proc. 89, 754–762 (2014).

    Article  PubMed  Google Scholar 

  215. Donini, L. M., Pinto, A., Giusti, A. M., Lenzi, A. & Poggiogalle, E. Obesity or BMI paradox? beneath the tip of the iceberg. Front. Nutr. 7, 53 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  216. The Lancet Diabetes Endocrinology. The obesity-cancer link: of increasing concern. Lancet Diabetes Endocrinol. 8, 175 (2020).

    Article  CAS  PubMed  Google Scholar 

  217. Feletto, E. et al. An ecological study of obesity-related cancer incidence trends in Australia from 1983 to 2017. Lancet Reg. Health West. Pac. 29, 100575 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Ringel, A. E. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866.e26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Sanchez, A. et al. Transcriptomic signatures related to the obesity paradox in patients with clear cell renal cell carcinoma: a cohort study. Lancet Oncol. 21, 283–293 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Lee, D. H. & Giovannucci, E. L. The obesity paradox in cancer: epidemiologic insights and perspectives. Curr. Nutr. Rep. 8, 175–181 (2019).

    Article  PubMed  Google Scholar 

  222. Strulov Shachar, S. & Williams, G. R. The obesity paradox in cancer-moving beyond BMI. Cancer Epidemiol. Biomark. Prev. 26, 13–16 (2017).

    Article  Google Scholar 

  223. Straub, L. G. & Scherer, P. E. Metabolic messengers: adiponectin. Nat. Metab. 1, 334–339 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Arita, Y. et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  225. van Andel, M., Heijboer, A. C. & Drent, M. L. Adiponectin and its isoforms in pathophysiology. Adv. Clin. Chem. 85, 115–147 (2018).

    Article  PubMed  Google Scholar 

  226. Maeda, N., Funahashi, T., Matsuzawa, Y. & Shimomura, I. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis 292, 1–9 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Woodward, L., Akoumianakis, I. & Antoniades, C. Unravelling the adiponectin paradox: novel roles of adiponectin in the regulation of cardiovascular disease. Br. J. Pharmacol. 174, 4007–4020 (2017).

    Article  CAS  PubMed  Google Scholar 

  228. Spranger, J. et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 361, 226–2288 (2003).

    Article  CAS  PubMed  Google Scholar 

  229. Wang, Y. et al. Plasma adiponectin levels and type 2 diabetes risk: a nested case-control study in a Chinese population and an updated meta-analysis. Sci. Rep. 8, 406 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Koenig, W., Khuseyinova, N., Baumert, J., Meisinger, C. & Löwel, H. Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-year follow-up of a large cohort from southern Germany. J. Am. Coll. Cardiol. 48, 1369–1377 (2006).

    Article  CAS  PubMed  Google Scholar 

  231. Frystyk, J. et al. Serum adiponectin is a predictor of coronary heart disease: a population-based 10-year follow-up study in elderly men. J. Clin. Endocrinol. Metab. 92, 571–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  232. Pischon, T. et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291, 1730–1737 (2004).

    Article  CAS  PubMed  Google Scholar 

  233. Persson, J. et al. Low plasma adiponectin concentration is associated with myocardial infarction in young individuals. J. Intern. Med. 268, 194–205 (2010).

    Article  CAS  PubMed  Google Scholar 

  234. Kazumi, T., Kawaguchi, A., Hirano, T. & Yoshino, G. Serum adiponectin is associated with high-density lipoprotein cholesterol, triglycerides, and low-density lipoprotein particle size in young healthy men. Metabolism 53, 589–593 (2004).

    Article  CAS  PubMed  Google Scholar 

  235. Saarikoski, L. A. et al. Adiponectin is related with carotid artery intima-media thickness and brachial flow-mediated dilatation in young adults—the Cardiovascular Risk in Young Finns Study. Ann. Med. 42, 603–611 (2010).

    Article  CAS  PubMed  Google Scholar 

  236. Sattar, N. et al. Adiponectin and coronary heart disease: a prospective study and meta-analysis. Circulation 114, 623–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  237. Sook Lee, E. et al. Association between adiponectin levels and coronary heart disease and mortality: a systematic review and meta-analysis. Int. J. Epidemiol. 42, 1029–1039 (2013).

    Article  PubMed  Google Scholar 

  238. Arregui, M. et al. Adiponectin and risk of stroke: prospective study and meta-analysis. Stroke 45, 10–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  239. Wu, Z., Cheng, Y., Aung, L. H. & Li, B. Association between adiponectin concentrations and cardiovascular disease in diabetic patients: a systematic review and meta-analysis. PLoS ONE 8, e78485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Scarale, M. G., Fontana, A., Trischitta, V., Copetti, M. & Menzaghi, C. Circulating adiponectin levels are paradoxically associated with mortality rate. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 104, 1357–1368 (2018).

    Article  Google Scholar 

  241. Menzaghi, C. & Trischitta, V. The adiponectin paradox for all-cause and cardiovascular mortality. Diabetes 67, 12–22 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Menzaghi, C. et al. Circulating adiponectin and cardiovascular mortality in patients with type 2 diabetes mellitus: evidence of sexual dimorphism. Cardiovasc. Diabetol. 13, 130 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Kollerits, B. et al. Gender-specific association of adiponectin as a predictor of progression of chronic kidney disease: the mild to moderate kidney disease study. Kidney Int. 71, 1279–1286 (2007).

    Article  CAS  PubMed  Google Scholar 

  244. Wang, Y., Ma, X. L. & Lau, W. B. Cardiovascular adiponectin resistance: the critical role of adiponectin receptor modification. Trends Endocrinol. Metab. 28, 519–530 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Kim-Mitsuyama, S. et al. Total adiponectin is associated with incident cardiovascular and renal events in treated hypertensive patients: subanalysis of the ATTEMPT-CVD randomized trial. Sci. Rep. 9, 16589 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Bruce, C. R., Mertz, V. A., Heigenhauser, G. J. & Dyck, D. J. The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects. Diabetes 54, 3154–3160 (2005).

    Article  CAS  PubMed  Google Scholar 

  247. Chen, M. B. et al. Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics. J. Clin. Endocrinol. Metab. 90, 3665–36672 (2005).

    Article  CAS  PubMed  Google Scholar 

  248. Tsuchida, A. et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J. Biol. Chem. 279, 30817–30822 (2004).

    Article  CAS  PubMed  Google Scholar 

  249. Zhao, S., Kusminski, C. M. & Scherer, P. E. Adiponectin, leptin and cardiovascular disorders. Circ. Res. 128, 136–149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Yang, W., Kelly, T. & He, J. Genetic epidemiology of obesity. Epidemiol. Rev. 29, 49–61 (2007).

    Article  PubMed  Google Scholar 

  251. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Silventoinen, K. et al. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region: an individual-based pooled analysis of 40 twin cohorts. Am. J. Clin. Nutr. 106, 457–466 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Elks, C. E. et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front. Endocrinol. 3, 29 (2012).

    Article  Google Scholar 

  254. Johnson, W. D., Brashear, M. M., Gupta, A. K., Rood, J. C. & Ryan, D. H. Incremental weight loss improves cardiometabolic risk in extremely obese adults. Am. J. Med. 124, 931–938 (2011).

    Article  PubMed  Google Scholar 

  255. Bailey-Davis, L. et al. Impact of sustained weight loss on cardiometabolic outcomes. Am. J. Cardiol. 162, 66–72 (2022).

    Article  PubMed  Google Scholar 

  256. Wing, R. R. et al. Association of weight loss maintenance and weight regain on 4-year changes in CVD risk factors: the action for health in diabetes (Look AHEAD) clinical trial. Diabetes Care 39, 1345–1355 (2016).

    Article  CAS  PubMed  Google Scholar 

  257. Magkos, F. et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 23, 591–601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Chen, C., Ye, Y., Zhang, Y., Pan, X. F. & Pan, A. Weight change across adulthood in relation to all cause and cause specific mortality: prospective cohort study. BMJ 367, l5584 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Adams, K. F. et al. Body mass and weight change in adults in relation to mortality risk. Am. J. Epidemiol. 179, 135–144 (2014).

    Article  PubMed  Google Scholar 

  260. Iwamoto, S. J., Abushamat, L. A., Zaman, A., Millard, A. J. & Cornier, M. A. Obesity management in cardiometabolic disease: state of the art. Curr. Atheroscler. Rep. 23, 59 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Franz, M. J. et al. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J. Am. Diet. Assoc. 107, 1755–1767 (2007).

    Article  PubMed  Google Scholar 

  262. Hall, K. D. et al. Quantification of the effect of energy imbalance on bodyweight. Lancet 378, 826–837 (2011).

    Article  PubMed  Google Scholar 

  263. Polidori, D., Sanghvi, A., Seeley, R. J. & Hall, K. D. How strongly does appetite counter weight loss? Quantification of the feedback control of human energy intake. Obesity 24, 2289–2295 (2016).

    Article  CAS  PubMed  Google Scholar 

  264. Berger, S. E., Huggins, G. S., McCaffery, J. M., Jacques, P. F. & Lichtenstein, A. H. Change in cardiometabolic risk factors associated with magnitude of weight regain 3 years after a 1-year intensive lifestyle intervention in type 2 diabetes mellitus: the look AHEAD trial. J. Am. Heart Assoc. 8, e010951 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Anderson, J. W., Konz, E. C., Frederich, R. C. & Wood, C. L. Long-term weight-loss maintenance: a meta-analysis of US studies. Am. J. Clin. Nutr. 74, 579–584 (2001).

    Article  CAS  PubMed  Google Scholar 

  266. Ge, L. et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ 369, m696 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Thorogood, A. et al. Isolated aerobic exercise and weight loss: a systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 124, 747–755 (2011).

    Article  PubMed  Google Scholar 

  268. Verheggen, R. J. et al. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obes. Rev. 17, 664–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  269. Chang, Y. H., Yang, H. Y. & Shun, S. C. Effect of exercise intervention dosage on reducing visceral adipose tissue: a systematic review and network meta-analysis of randomized controlled trials. Int. J. Obes. 45, 982–997 (2021).

    Article  Google Scholar 

  270. Swift, D. L., Johannsen, N. M., Lavie, C. J., Earnest, C. P. & Church, T. S. The role of exercise and physical activity in weight loss and maintenance. Prog. Cardiovasc. Dis. 56, 441–447 (2014).

    Article  PubMed  Google Scholar 

  271. Johns, D. J., Hartmann-Boyce, J., Jebb, S. A. & Aveyard, P., Behavioural Weight Management Review Group. Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta-analysis of direct comparisons. J. Acad. Nutr. Diet. 114, 1557–1568 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).

    Article  CAS  PubMed  Google Scholar 

  273. Dombrowski, S. U., Knittle, K., Avenell, A., Araújo-Soares, V. & Sniehotta, F. F. Long term maintenance of weight loss with non-surgical interventions in obese adults: systematic review and meta-analyses of randomised controlled trials. BMJ 348, g2646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Khera, R. et al. Association of pharmacological treatments for obesity with weight loss and adverse events: a systematic review and meta-analysis. JAMA 315, 2424–2434 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Salari, N. et al. The best drug supplement for obesity treatment: a systematic review and network meta-analysis. Diabetol. Metab. Syndr. 13, 110 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  277. Rao, S. et al. Effect of exercise and pharmacological interventions on visceral adiposity: a systematic review and meta-analysis of long-term randomized controlled trials. Mayo Clin. Proc. 94, 211–224 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Lundgren, J. R. et al. Healthy weight loss maintenance with exercise, liraglutide, or both combined. N. Engl. J. Med. 384, 1719–1730 (2021).

    Article  PubMed  Google Scholar 

  279. Ricci, C. et al. Long-term effects of bariatric surgery on type II diabetes, hypertension and hyperlipidemia: a meta-analysis and meta-regression study with 5-year follow-up. Obes. Surg. 25, 397–405 (2015).

    Article  PubMed  Google Scholar 

  280. Wu, F. Z. et al. Differential effects of bariatric surgery versus exercise on excessive visceral fat deposits. Medicine 95, e2616 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Ren, Z. Q., Lu, G. D., Zhang, T. Z. & Xu, Q. Effect of physical exercise on weight loss and physical function following bariatric surgery: a meta-analysis of randomised controlled trials. BMJ Open 8, e023208 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Mohammadian Khonsari, N. et al. Normal weight obesity and cardiometabolic risk factors: a systematic review and meta-analysis. Front. Endocrinol. 13, 857930 (2022).

    Article  Google Scholar 

  283. Gomez-Ambrosi, J. et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int. J. Obes. 36, 286–294 (2012).

    Article  CAS  Google Scholar 

  284. Romero-Corral, A. et al. Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur. Heart J. 31, 737–746 (2010).

    Article  PubMed  Google Scholar 

  285. Batsis, J. A. et al. Normal weight obesity and mortality in United States subjects >/=60 years of age (from the Third National Health and Nutrition Examination Survey). Am. J. Cardiol. 112, 1592–1598 (2013).

    Article  PubMed  Google Scholar 

  286. Rakhmat, I. I. et al. Cardiometabolic risk factors in adults with normal weight obesity: a systematic review and meta-analysis. Clin. Obes. 12, e12523 (2022).

    Article  PubMed  Google Scholar 

  287. Gagnon, E. et al. Mendelian randomization prioritizes abdominal adiposity as an independent causal factor for liver fat accumulation and cardiometabolic diseases. Commun. Med. 2, 130 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Zhang, C., Rexrode, K. M., van Dam, R. M., Li, T. Y. & Hu, F. B. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation 117, 1658–1667 (2008).

    Article  PubMed  Google Scholar 

  289. Cerhan, J. R. et al. A pooled analysis of waist circumference and mortality in 650,000 adults. Mayo Clin. Proc. 89, 335–345 (2014).

    Article  PubMed  Google Scholar 

  290. Reis, J. P. et al. Comparison of overall obesity and body fat distribution in predicting risk of mortality. Obesity 17, 1232–1239 (2009).

    Article  PubMed  Google Scholar 

  291. Sahakyan, K. R. et al. Normal-weight central obesity: implications for total and cardiovascular mortality. Ann. Intern. Med. 163, 827–835 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Coutinho, T. et al. Combining body mass index with measures of central obesity in the assessment of mortality in subjects with coronary disease: role of “normal weight central obesity”. J. Am. Coll. Cardiol. 61, 553–560 (2013).

    Article  PubMed  Google Scholar 

  293. Konieczna, J. et al. Body adiposity indicators and cardiometabolic risk: cross-sectional analysis in participants from the PREDIMED-Plus trial. Clin. Nutr. 38, 1883–1891 (2019).

    Article  PubMed  Google Scholar 

  294. Ross, R. et al. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 16, 177–189 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Ibrahim, M. M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11, 11–18 (2010).

    Article  PubMed  Google Scholar 

  296. Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  297. Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Gustafson, B. & Smith, U. The WNT inhibitor Dickkopf 1 and bone morphogenetic protein 4 rescue adipogenesis in hypertrophic obesity in humans. Diabetes 61, 1217–1224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Driskell, R. R., Jahoda, C. A., Chuong, C. M., Watt, F. M. & Horsley, V. Defining dermal adipose tissue. Exp. Dermatol. 23, 629–631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Zhang, Z. et al. Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J. Clin. Invest. 129, 5327–5342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Kasza, I., Hernando, D., Roldán-Alzate, A., Alexander, C. M. & Reeder, S. B. Thermogenic profiling using magnetic resonance imaging of dermal and other adipose tissues. JCI Insight 1, e87146 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Rivera-Gonzalez, G., Shook, B. & Horsley, V. Adipocytes in skin health and disease. Cold Spring Harb. Perspect. Med. 4, a015271 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Kruglikov, I. L., Zhang, Z. & Scherer, P. E. The role of immature and mature adipocytes in hair cycling. Trends Endocrinol. Metab. 30, 93–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  305. Schmidt, B. A. & Horsley, V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 140, 1517–1527 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Hwang, I. & Kim, J. B. Two faces of white adipose tissue with heterogeneous adipogenic progenitors. Diabetes Metab. J. 43, 752–762 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Ledoux, S. et al. Traditional anthropometric parameters still predict metabolic disorders in women with severe obesity. Obesity 18, 1026–1032 (2010).

    Article  PubMed  Google Scholar 

  308. O’Connell, J. et al. The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity. PLoS ONE 5, e9997 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Arner, P. et al. Variations in the size of the major omentum are primarily determined by fat cell number. J. Clin. Endocrinol. Metab. 98, E897–E901 (2013).

    Article  PubMed  Google Scholar 

  310. Jeffery, E., Church, C. D., Holtrup, B., Colman, L. & Rodeheffer, M. S. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat. Cell Biol. 17, 376–385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Corvera, S. Cellular heterogeneity in adipose tissues. Annu. Rev. Physiol. 83, 257–278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Whitehead, A. et al. Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nat. Commun. 12, 1905 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Yang, F. T. & Stanford, K. I. Batokines: mediators of inter-tissue communication (a mini-review). Curr. Obes. Rep. 11, 1–9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  314. AlZaim, I. & Kalucka, J. Batokine neuregulin 4 promotes atherosclerotic resolution. Nat. Metab. 4, 1440–1441 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to K. McCreath for his editorial assistance with the manuscript before initial submission. Research by A.L. is funded by the Wereld Kanker Onderzoek Fonds (WKOF), as part of the World Cancer Research Fund International grant programme and the Spanish Ministry of Science and Innovation (Fondo de Investigaciones Sanitarias (FIS)) and Fondos FEDER (grant number PI18/00139). Research by P.L.V. is supported by a Sara Borrell postdoctoral contract granted by Instituto de Salud Carlos III (CD21/00138).

Author information

Authors and Affiliations

Authors

Contributions

P.L.V., P.C.-B., D.E.L. and A.L. wrote the manuscript. All the authors researched data for the article, contributed to discussion of content and reviewed and/or edited the article before submission.

Corresponding authors

Correspondence to Pedro L. Valenzuela or Alejandro Lucia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Charalambos Antoniades and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adipocytokine

From the Greek adipo (fat), cytos (cell) and kinos (movement); also termed ‘adipokine’. Cytokine secreted by adipose tissue.

Adipogenesis

Formation of new adipocytes from precursor cells.

Aerobic exercise

Also known as endurance exercise. Exercise that is performed for more than a few minutes and preferentially involves aerobic metabolism for energy production (for example, brisk walking, bicycling or swimming).

Bariatric surgery

Also known as weight-loss surgery. Various surgical procedures (such as gastric bypass) performed on people with obesity that alters levels of digestive hormones responsible for hunger and satiety.

Cardiorespiratory fitness

The capacity of the circulatory and respiratory systems to supply oxygen to skeletal muscle mitochondria for production of the energy needed during physical activity, usually determined by treadmill or cycle-ergometer testing until exhaustion.

Damage‐associated molecular patterns

(DAMPs). Molecules that act as endogenous danger signals; they are released into the extracellular space in response to cell damage and promote inflammatory responses by binding to pattern recognition receptors.

Dual-energy X-ray absorptiometry

(DXA or DEXA). A method of measuring fat and lean (muscle and bone) mass based on the different attenuation coefficients to X-rays of soft tissue and bone.

Glycated haemoglobin

Also known as haemoglobin A1c (HbA1c). A form of haemoglobin that is produced when glucose reacts with the amino group on a haemoglobin molecule, thereby reflecting the presence of hyperglycaemia, which is often indicative of diabetes mellitus.

Heart failure with preserved ejection fraction

A type of heart failure that occurs when the muscle in the left ventricle stiffens and has a lower relaxation capacity. Patients have signs and symptoms of heart failure despite having a normal, or near-normal, left ventricular ejection fraction (≥50%).

Hyperplasia

An increase in the number of cells in an organ or tissue (by recruitment and differentiation of new precursor cells) that seem normal under a microscope (as opposed to dysplasia) and result in an increase in organ or tissue size.

Hypertrophy

An increase in the size of cells in an organ or tissue as a result of elevated synthesis of structural components (not of cellular swelling) that can result in an increase in organ or tissue size.

Integrated stress response

An evolutionarily conserved intracellular signalling network that helps the cell, tissue and organism to adapt to a variable environment and maintain health.

Lipoapoptosis

Ectopic lipid overload can interfere with cell functions and induce apoptosis, thereby contributing to gradual organ failure.

Lipodystrophy syndromes

Heterogeneous group of diseases characterized by the selective absence of adipose tissue, where the primary defect is the loss of functional adipocytes, leading to lipotoxicity, severe dyslipidaemia or insulin resistance.

Lipotoxicity

When the storage capacity of the white adipose tissue is exceeded, ectopic fat storage occurs in several organs (skeletal muscle, liver, heart and pancreas), leading to cellular dysfunction in these organs.

Long-chain saturated fatty acids

(LCSFAs). Fatty acids with aliphatic tails with >12 carbon atoms (for example, palmitate and stearate), resulting from the hydrolysis of neutral lipids (such as triacylglycerols stored in adipocytes). LCSFAs are also found abundantly in dairy fat, tallow, lard and palm oil.

Mediterranean diet

A diet abundant in fruits, vegetables, legumes, whole grains, olives, nuts and seeds, and containing extra-virgin olive oil, associated with frequent consumption of fish, moderate consumption of dairy products and red wine, and low consumption of red meat and isolated sugars.

Metabolic syndrome

A clustering of three or more of the following five medical conditions: abdominal obesity (as determined by waist circumference), high blood pressure, hyperglycaemia, hypertriglyceridaemia and low serum HDL-cholesterol level.

Neutral lipids

Based on their chemical characteristics, lipids can be classified into neutral (for example, triacylglycerols) and polar (such as phospholipids and glycolipids) lipids; neutral lipids are used as major energy sources and polar lipids as cell membrane components.

NLRP3 inflammasome

Cytosolic multiprotein oligomer involved in the innate immune response, responsible for the activation of pro-inflammatory responses.

Obesity class

Class 1 is defined as BMI of 30 to <35 kg/m2, class 2 as BMI 35 to <40 kg/m2 and class 3 as BMI ≥40 kg/m2.

Omentum

The layers of peritoneum (the serous membrane forming the lining of the abdominal cavity) that surround abdominal organs: the greater omentum is a large apron-like fold of visceral peritoneum that hangs down from the stomach, whereas the lower omentum hangs down from the liver.

Pattern recognition receptor

A type of receptor that recognizes damage-associated molecular patterns, as well as molecular structures produced by microbial pathogens.

Physical activity

Any bodily movement produced by skeletal muscles that requires energy expenditure (for example, walking). The WHO recommends that adults engage in regular (150–300 min per week) moderate or vigorous aerobic physical activities (such as brisk walking).

Physical exercise

Also termed ‘exercise training’ or simply ‘exercise’. A subset of physical activity that is planned, structured and repetitive and has a final or an intermediate objective of improving or maintaining fitness or health outcomes.

Sarcopenia

Derived from the Greek ‘sarx’ (flesh) and ‘penia’ (loss). The age-induced (or sometimes disease-induced) loss of muscle mass and function.

Senescence-associated secretory phenotype

Phenotype associated with senescent cells, which secrete high levels of pro-inflammatory cytokines, chemokines and other molecules.

Severe obesity

Also known as obesity class 3; BMI ≥40 kg/m2. The term ‘morbid obesity’ was also formerly used to define a BMI of ≥40 kg/m2 (or BMI ≥35 kg/m2 when accompanied by obesity-related conditions).

Systemic, low-grade, chronic inflammation

A sterile chronic inflammation characterized by the activation of immune components that are often distinct from those engaged in acute immune responses, potentially causing major alterations in all tissues and organs as well as in normal cellular physiology and increasing the risk of various non-communicable diseases across the lifespan of the individual.

γδ T cells

A small subset of T lymphocytes that express heterodimeric T cell receptors (TCRs) composed of γ and δ chains, as opposed to the classical CD4+ T helper cells or CD8+ cytotoxic T cells, which express αβ TCRs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, P.L., Carrera-Bastos, P., Castillo-García, A. et al. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol 20, 475–494 (2023). https://doi.org/10.1038/s41569-023-00847-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00847-5

  • Springer Nature Limited

This article is cited by

Navigation